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Статья продолжает серию публикаций авторов, посвященных 
исследованию многоканальной многочастотной субнайквистовой 
дискретизации полосовых сигналов. При таком подходе в каналах 
происходит наложение спектров разной степени. Для разработки 
алгоритмов восстановления искаженных сигналов необходимо глу-
бокое исследование процесса наложения спектров. Исследуется 
новый способ визуализации положения альясов на оси частот. Ме-
тод основан на представлении положений альясов как функции двух 
переменных, одной из которых является сама частота, а второй – 
нижняя граница части конечного спектра сигнала, расположенной 
на положительных частотах. В результате формируется узорча-
тая структура, в которой периодически (с периодом, равным ча-
стоте дискретизации) повторяется некий элементарный пат-
терн. Изучается структура этого паттерна как функция взаимо-
связи между шириной спектра сигнала и частотой дискретизации. 

УДК 621.391 

ПРЕОБРАЗОВАНИЕ СПЕКТРА СИГНАЛОВ  
ПРИ ЭКВИДИСТАНТНОЙ ПОЛОСОВОЙ СУБНАЙКВИСТОВОЙ ДИСКРЕТИЗАЦИИ 
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TRANSFORMATION THE SPECTRUM OF SIGNALS WITH EQUIDISTANT BANDPASS 
SAMPLING 

Lesnikov V.А., Naumovich T.V., Chastikov A.V., Metelyov A.P. 

This paper continues the series of publications by the authors devoted to the study of multi-channel multi-frequency sub-Nyquist 
sampling of bandpass signals. With this approach, aliasing of varying degrees occurs in the channels. To develop algorithms for the 
restoration of distorted signals, a deep study of aliasing is necessary. The article explores a new way to visualize the positions of 
aliases on the frequency axis. The method is based on representing the positions of aliases as a function of two variables, one of 
which is the frequency itself, and the second is the lower bound of the part of the finite spectrum of the signal located at positive fre-
quencies. As a result, a patterned structure is formed in which a certain elementary pattern is repeated periodically (with a period 
equal to the sampling frequency). This paper studies the structure of this pattern as a function of the relationship between spectral 
bandwidth and sampling rate. 

Key words: bandpass signals; bandpass sampling; uniform sampling; aliasing; degree of aliasing; sampled pattern. 
 

Ключевые слова полосовые сигналы; поло-
совая дискретизация; эквидистантная дискрети-
зация; альясы; степень наложения спектров; 
паттерн дискретизации.  

Введение 

Важнейшими объектами цифровой обработ-
ки в сетях связи, радиолокации, гидролокации, 
когнитивных радиосетях и многих других обла-
стях являются полосовые сигналы, спектр кото-
рых сосредоточен в определенной полосе ча-
стот, значительно превышающей нулевую ча-
стоту. Выбор схемы дискретизации для полосо-
вых сигналов принципиально отличается от 
схемы дискретизации для низкочастотных сиг-
налов. 

При дискретизации низкочастотных сигналов 
с ограниченной полосой теорема отсчетов (теорема 
Котельникова, теорема Уитеккера-Котельникова-Шенно-
на) однозначно определяет минимальное значение ча-
стоты эквидистантной дискретизации, обеспечивающей 
отсутствие наложения спектров (альясинга), формиру-
ющихся при периодическом продолжении спектра дис-

кретизируемого сигнала (рис. 1) [1]. 
При полосовой дискретизации основой является не 

максимальная частота дискретизированного сигнала, а 
ширина его спектра. Выбор частоты дискретизации го-
раздо  сложнее.  Это, в частности,  объясняется тем, что 

 
Рис. 1. Преобразование спектра при дискретизации низкочастотных сигналов с частотой 2sf f   
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Рис. 2. Наложение спектров при полосовой дискретизации с частотой 8sf f   

взаимное расположение периодического продолжения 
как части спектра дискретизируемого аналогового сиг-
нала, расположенной на положительных частотах, так и 
части его спектра, расположенной на отрицательных 
частотах, имеет сложную структуру [1] – [3]. При любом 
соотношении между шириной спектра сигнала и часто-
той дискретизации возможны такие положения полосы 
сигнала на оси частот, при которых происходит наложе-
ние спектров [1], [2]. На рис. 2 показан пример наличия 
наложения спектров при частоте дискретизации, пре-
вышающей ширину спектра сигнала в восемь раз.  

В большом количестве публикаций обсуждаются 
проблемы определения схемы полосовой дискретиза-
ции, обеспечивающей отсутствие наложение спектров 
при эквидистантной дискретизации [4], при дискретиза-
ции комплексной огибающей [5], при дискретизация 
второго порядка [6], при периодической неэквидистант-
ной дискретизации [7], при случайной дискретизации [8] 
и многие другие. 

Несмотря на длительную историю работ в этой об-
ласти, проблему нельзя считать полностью решенной. 
Свидетельством этого является постоянное появление 
новых публикаций [9] – [14]. 

Один из подходов к цифровой обработке полосовых 
сигналов основан на многоканальной дискретизации. В 
этом случае входной сигнал подвергается в m каналах 
различным видам предварительной аналоговой обра-
ботки с последующей дискретизацией в каждом канале. 
Такой подход позволяет снизить требуемую теоремой 
отсчетов частоту дискретизации в m раз. Естественно, 
что в каждом канале при этом происходит наложение 
спектров, но используя избыточность, определяемую 
многоканальностью, сигнал можно восстановить. Л. Фо-
гель показал, что дискретизация сигнала с ограничен-
ной полосой и его производной позволяет снизить ча-
стоту дискретизации в два раза [21]. В [22] – [24] этот 
результат был распространен на дополнительную дис-
кретизацию не только самого сигнала, но и m-1 его про-
изводныx. Обобщенная дискретизация, предложенная 
А. Папулисом в [25], предполагает в каналах предвари-
тельную обработку различными аналоговыми фильтра-

ми. Во всех этих подходах частота эквидистантной дис-
кретизации в каналах одинакова. Недостатком этих под-
ходов является необходимость в дополнительной ана-
логовой обработке исходного сигнала и высокая слож-
ность восстановления сигнала по его отсчетам. 

Авторы статьи в цикле своих работ исследуют воз-
можность использования многоканальной многочастот-
ной субнайквистовой полосовой дискретизации, при ко-
торой в каналах имеет место наложение спектра, но, тем 
не менее, возможно восстановление искаженных сигна-
лов без дополнительной аналоговой обработки с ис-
пользованием только операций сложения и вычитания 
[15] – [18]. В отличие от других методов многоканальной 
дискретизации в данном случае избыточность, компен-
сирующая уменьшение частоты дискретизации, обеспе-
чивается тем, что во всех каналах частота эквидистант-
ной дискретизации различна. Для разработки алгорит-
мов восстановления сигналов при этом подходе необхо-
димо глубокое изучение спектра сигналов при полосовой 
субнайквистовой дискретизации, в том числе при нали-
чии наложения спектров произвольной степени (при 
наложении спектров n-й степени происходит наложение 
спектров n-1 парциального спектра) [16] – [20]. Данная 
статья продолжает исследования авторов в этой обла-
сти. Полученные результаты позволяют однозначно 
определить спектр сигналов при любых значениях ши-
рины спектра сигнала, при любом положении полосы 
сигнала на оси частот, при любой частоте эквидистант-
ной дискретизации. 

Спектральное 2D представление  
аналоговых полосовых сигналов 

Как известно [1] – [3], спектр полосового аналогового 
сигнала состоит из двух частей (парциальных спектров, 
альясов): один альяс на положительных частотах, вто-
рой – на отрицательных частотах. Назовем эти части 
O( f ) – исходное изображение и M( f ) – зеркальное 
изображение соответственно (рис. 3, а)). На рисунках в 
данной статье используется условное изображение ком-
плексного спектра без отдельного изображения его дей-
ствительной и мнимой части. 

 
а) 

 
б) 

Рис. 3. Преобразование спектра при полосовой дискретизации 
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Фурье-спектр сигнала можно представить следую-
щим образом: 
X( ) {x( )} O( ) M( ),f t f f  F   (1) 

где { }F   – преобразование Фурье. Области определе-

ния (support, носители) O( )f  и M( )f  определяются как 

sup pO( ) [ , ]L Hf f f   (2) 
и 
sup pM( ) [ , ],H Lf f f     (3) 

где fL и fH – нижняя и верхняя границы полосы O( )f  
соответственно. Если полосовой сигнал действитель-
ный, то действительная часть его преобразования Фурье 
является четной функцией, а мнимая часть – нечетной: 

ReO( ) Re M( ),
Im O( ) Im M( ).

f f
f f

 
   

  (4) 

Если сигнал комплексный, то его действительная и 
мнимая части не являются ни четными, ни нечетными 
функциями. 

В работе нас будут интересовать не значения O( )f  

и M( ),f  а только их носитель при разных положениях 
полосы спектра сигнала на оси частот (рис. 4). Спектр 
сигнала будем представлять в виде носителя функции 
трех переменных ,f  fl и f при фиксированном значе-
нии ширины полосы 

H L ,f f f     (5) 
где fL и fH – некоторые исходные значения нижней и 
верхней границ полосы сигнала. Под частотой fl будем 
понимать все возможные значения нижней границы по-
лосы сигнала с шириной полосы, равной .f  

 
Рис. 4. 2D-представление области определения (носителя) 

спектра полосового сигнала 

 
Рис. 5. Носитель спектров полосового сигнала  

в результате эквидистантной субнайквистовой  
дискретизации с фиксированными частотой дискретизации 

sf  и полосой f  и произвольной частотой lf  

Дискретизация полосовых сигналов 

В то время, как спектр аналогового сигнала является 
апериодическим, эквидистантная дискретизация приво-
дит к периодическому продолжению частей его спектра 

с периодом, равным частоте дискретизации (рис. 3, б)). 
На рис. 5 представлен носитель спектра полосового 

сигнала, формируемого в результате дискретизации с 
частотой fs, как функция двух переменных f и fl с фикси-
рованными параметрами fs и .f  Следует отметить, что 
здесь и ниже масштабы по обеим осям одинаковы. 

Итак, спектр дискретизированного сигнала представ-
ляет собой периодическую последовательность альясов 
спектра аналогового сигнала с периодом fs. Перенуме-
руем альясы так, чтобы номер альясов Oi(•), для кото-
рых нижняя левая граница удовлетворяет условию 
0 < fl ≤ fs, было равно нулю. Альяс М-i расположен сим-
метрично альясу Оi. 

Для упрощения изложения параллелограммы с вер-
шинами {(ifs, ifs); ((i+1)fs, (i+1)fs)); (i+1)fs + ,f  (i+1)fs); 
(ifs + ,f  ifs)}, соответствующие носителям альясов 
Oi(•), а также параллелограммы с вершинами {(ifs, ifs), 
((i -1)fs, (i -1)fs), ((i-1)fs - ,f  fs), (ifs - ,f  ifs), соответ-
ствующие носителям альясов Mi(•), будем также назы-
вать альясами Oi и Mi соответственно. 

В работе для областей наложения спектров приняты 
обозначения 1, 2, ; 1, 2, ,o o m mC

   где oi, mi – номера пере-

крывающихся альясов ( )oiO f  и ( )miM f  соответст-
венно,   – степень наложения спектров. 

Узорчатая природа ( )suppX , lf f  

На рис. 5 видно, что 2D-представление supp X( , )lf f  
имеет узорчатый характер. Этот узор имеет периоди-
ческую структуру как по оси 0f, так и по оси 0fl. Легко 
выделить элементарный узор, представляющий собой 
квадратную структуру со стороной квадрата, равной fs. 
Этот узор будем называть паттерном. Границы 
элементарного узора показаны зеленым цветом на 
рис. 5. 

При этом части соседних альясов M2(•) и O-1(•) попа-
дают в область, занимаемую элементарным паттер- 
ном P. Очевидно, что число таких соседних альясов будет 
увеличиваться по мере увеличения отношения ./ sf f  

 
Рис. 6. Пример взаимного расположения элементарного  

паттерна P и альясов O0(•), O-1(•), M1(•) и M2(•) 

Рис. 6 иллюстрирует тот факт, что для элементарно-
го паттерна альясы O0(•) и M1(•) имеют первостепенное 
значение. Но они не полностью укладываются в элемен-
тарный паттерн P. Альяс O0(•) частично находится  
в соседнем справа элементарном паттерне, а альяс 
M1(•) – в соседнем слева. В этом примере требуется по 
одному дополнительному паттерну слева и справа. В 
общем случае количество дополнительных паттернов с 
каждой стороны очевидно будет равно 

ceil( / ),p sn f f    (6) 
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 а) б) 

 
в) 

Рис. 7. Процесс формирования элементарного паттерна P 

где ceil(•) возвращает значение, равное наименьшему 
целому числу, большему или равному (•). 

Рис. 7, а демонстрирует взаимосвязь части O0(•), не 
вошедшей в P, и части O-1(•), вошедшей в P, а также 
аналогичный обмен между M1(•) и М2(•). Для формали-
зации описания процесса формирования элементарного 
узора введем области, изоморфные областям, занятым 
элементарным узором P и соседними узорами, но не 
включающие в себя никаких альясов. Назовем их заго-
товками (blanks) Bi(•). В данном примере это B-1(•), B0(•), 
B1(•) (рис. 7, б)) 

Далее подготовим заготовки (workpieces) Wi(•) для 
формирования паттерна P (рис. 7, в)): 

1 1 1 1W ( ) B ( ) (M ( ) B ( )),, , , ,l l l lf f f f f f f f      (7) 

0 0 1

0 0 0

W ( ) B ( ) (M ( )
B ( )) (O ( ) B ( ))

, , ,
, , , ,

l l l

l l l

f f f f f f
f f f f f f

  
  

  (8) 

1 1 0 1W ( ) B ( ) (O ( ) B ( ))., , , ,l l l lf f f f f f f f     (9) 

Здесь и ниже используются следующие символы:  
  – символ объединения областей,   – символ пере-
сечения областей. 

И, наконец, формируем элементарный паттерн P 
(рис. 7, г)): 

1 0 1

P( )
W ( ) W ( ) W ( )

,
, , , .

l

s l l s l

f f
f f f f f f f f  


  

  (10) 

Структурный анализ элементарных паттернов  
при различных соотношениях между fs и f  

Очевидно, структура элементарного паттерна зави-
сит от соотношения между fs, Df и fl. Однако известно [1], 
[2], что задачи анализа спектра дискретизированных 
сигналов имеют не три, а две степени свободы. При та-
ком анализе принято нормировать все частоты по ши-
рине спектра. Поэтому определим относительные вели-
чины: 

/ ,f f     (11) 
/ ,s sf f    (12) 
/ .l lf f     (13) 

А. Дискретизация при s 2   

Структура элементарного паттерна для данного зна-
чения sv  представлена на рис. 8, а). Для разных значе-

ний параметра lv  выделяются следующие области 
элементарного паттерна (рис. 8, а)): 

0 s

1 s s

2 s s

3 s s

4 s s

5 s s,

6 s

: 0 / 2 1,
: / 2 1 / 2 0.5,
: / 2 0.5 / 2,
: / 2 1,
: 1 0.5,
: 0.5
: .

l

l

l

l

l

l

l

 
  
  
  
  
  
 

   
    
      
    
   
 

  (14) 

В табл. 1 даются описания преобразованного спектра 
X( , )lv v  при соответствующих значениях .lv  

 
 а) s 2   б) s 2   
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 в) s1 2   г) s 1   

Рис. 8. Элементарные паттерны при различных значениях sv  

Таблица 1. Носитель спектра сигнала после полосовой дискретизации при 2sv   

X( , )lv   

Область 0 :N 

0

s

1 s s

s s

0 если 0 ,
O ( , ) если 1,
0 если 1 1,
M ( , ) если 1 ,
0 если .

l

l l l

l l

l l l

l

 
    

   
      

   

 
        

    
  

 

Область 1 :N 

0 s
1

0;1 s

1 s

s s

0 if 0 ,
O ( , ) if 1,
C ( , ) if 1 1,

M ( , ) if 1 ,
0 if .

l

l l l

l l l

l l l

l

 
     
     

     
   

 
         
    
   

 

Область 2 :N 

s

1 s
1

0;1 s

0 s

s

0 if 0 1,
M ( , ) if 1 ,
C ( , ) if ,

O ( , ) if 1,
0 if 1 .

l

l l l

l l l

l l l

l

  
     
     

     
  

   
       
    
   

 

Область 3 :N 

s

s s

s

s

0 if 0 1,
M( , ) if 1 ,
0 if ,
O( , ) if 1,
0 if 1 .

l

l l l

l l

l l l

l

  
      

   
    

  

   
        

  
  

 

Область 4 :N 
1

1;1 l s

1( , ) l s s

s

0 s
1

0;2 s s

C ( , ) if 0 1 ,
M if 1 ,
0 if ,
O ( , ) if 2 1,

C ( , ) if 2 1 .

l

l

l

l l

l l l

l l

 

    
    
   

     
     

    
        

    
     

 

Область 5 :N 



1
1;1 l s

1 l s s

s s

2 s
1

0;2 s

C ( , ) if 0 ,
O ( , ) if 1,
0 if 1 2 1,
M ( , ) if 2 1 ,

C ( , ) if .

l

l l

l l

l l l

l l

    
      

    
     
    





    
             

    
  

 

 

В некоторых областях имеет место наложение спек-
тров первой степени. На рис. 8, а) и ниже красными и 
синими стрелками показаны направления движения гра-
ниц при уменьшении .sv  

Б. Дискретизация при s 2    

Структура элементарного паттерна для данного зна-
чения sv  представлена на рис. 8, б). Области для этого 
паттерна описываются следующим образом: 

0

1

2

3

4

5

6

: 0 ,
: 0 0.5,
: 0.5 1,
: 1 ,
: 1 1.5,
: 1.5 2,
: 2 .

l

l

l

l

l

l

l









 
  
   
  
  
 

  (15) 

В табл. 2 приводятся описания спектра при соответ-
ствующих значениях .lv  

На некоторых частотах имеет место наложение 
спектров первой степени. 

В. Дискретизация при 1 2sv   

Структура элементарного паттерна для данного зна-
чения sv  представлена на рис. 8, в). Области для данно-
го паттерна описываются следующим образом: 

0

1 s

2 s s

3 s s

4 s

5 s

6 s s

: 0 ,
: 0 0.5( 1),
: 0.5( 1) 1,
: 1 0.5 ,
: 0.5 1,
: 1 0.5,
: 0.5 .

l

l

l

l

l

l

l


 

  
  

 
 

  

 
   
       
  
   
   

 (16) 

В табл. 3 приводятся описания спектра при соответ-
ствующих значениях .lv  

Г. Дискретизация при 1sv   

Структура элементарного паттерна для данного 
значения sv  представлена на рис. 8, в). При уменьше-

нии 1sv   нижняя граница альяса M1 приближается к 
неподвижной верхней границе альяса M0, а верхняя 
граница алиаса O-1 приближается к неподвижной нижней 
границе альяса O0. При 1sv   альяс M1 смыкается с  
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Таблица 2. Носитель спектра сигнала после полосовой дискретизации при 2sv   

X( , )lv   

Область 0 :N 

 0

1

O ( , ) if 0 1,
M ( , ) if 1 2.

l

l

  
  

     

Область 1 :N 


0,0

1
0;1

1,0

0 if 0 ,
O ( , ) if 1 ,
C ( , ) if 1 1,

M ( , ) if 1 2 ,
0 if 2 2.

l

l l l

l l l

l l l

l

 
    
    
    

 

 
   
    
    
   

 

Область 2 :N 

1
1

0;1

0

0 if 0 1 ,
M ( , ) if 1 ,
C ( , ) if 2 ,

O ( , ) if 2 1,
0 if 1 2.

l

l l l

l l l

l l l

l

 
    
    

    
 

  
      
    
   

 

Область 3 :N 

 1

0

M ( , ) if 0 1,
O ( , ) if 1 2.

l

l

  
  

     

Область 4 :N 
1

1;1 l s

1 l s

0
1

0;2

C ( , ) if 0 1 ,
M ( , ) if 1 2 ,
0 if 2 ,
O ( , ) if 3 ,

C ( , ) if 3 2.

l

l l

l l

l l l

l l

    
     

  
    
   

    
        

  
   

 

Область 5 :N 
1

1;1 l

1 l

2
1

0;2 s

C ( , ) if 0 2 ,
O ( , ) if 2 1,
0 if 1 3 ,
M ( , ) if 3 ,

C ( , ) if .

l

l l

l l

l l l

l l

   
    

  
    
    





   
        

  
  

 

Область 6 :N 

 1

2

O ( , ) if 0 1,
M ( , ) if 1 2.

l

l

  
  

      

 

Таблица 3. Носитель спектра сигнала после полосовой дискретизации при 2 1sv   

X( , )lv   

Область 0 :N  

0 s
1

0;1 s

1 s

O ( , ) if 0 1,
C ( , ) if 1 1,

M ( , ) if 1 .

l

l

l

   
   

   

     
  

 

Область 1 :N  

0 s
1

0;1 s

1 s ,

s s

0 if 0 ,
O ( , ) if 1,
C ( , ) if 1 1,

M ( , ) if 1
0 if .

l

l l l

l l l

l l l

l

 
     
     

     
   

 
          

   
   

 

Область 2 :N  

s

1 s
1

0;1 s

0 s

s

0 if 0 1,
M ( , ) if 1 ,
C ( , ) if ,

O ( , ) if 1,
0 if 1 .

l

l l l

l l l

l l l

l

  
     
     

     
  

   
       
    
   

 

Область 3 :N  
1

1;1 s

1 s
1

0;1 s

0 s s
1

0;2 s s

C ( , ) if 0 1,
M ( , ) if 1 ,
C ( , ) if ,

O ( , ) if 2 1,
C ( , ) if 2 1 .

l l

l l l

l l l

l l l

l l

    
     
     

      
     

    
       
     
    

 

Область 4 :N 
1

1;1 s

1 s s

s

0 s
1

0;2 s s

C ( , ) if 0 1,
M ( , ) if 1 ,
0 if ,
O ( , ) if 2 1,
C ( , ) if 2 1 .

l l

l l l

l l

l l l

l l

    
      

   
     
     

    
        

   
    

 

Область 5 :N 
1

1;1 s

1 s s

s s

2 s
1

0;2 s

C ( , ) if 0 ,
O ( , ) if 1,
0 if 1 2 1,
M ( , ) if 2 1 ,
C ( , ) if .

l l

l l l

l l

l l l

l l

    
      

    
     
    





   
           

   
  

 

Область 6 :N  
1

1;1 s

1 s s
1

1;2 s s

2 s
1

0;2 s

C ( , ) if 0 ,
O ( , ) if 2 1,
C ( , ) if 2 1 1,

M ( , ) if 1 ,
C ( , ) if .

l l

l l l

l l l

l l l

l l

    
      
      

     
    







   
           
    
  
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альясом M0, а альяс O-1 – c O0. При любых значениях nl 
в спектре дискретизируемых сигналов при 1sv   на 

любой частоте будет иметь место алиасинг. При 1sv   
вся поверхность элементарного паттерна покрывается 
четырьмя смежными составными частями в виде 
прямоугольных треугольников: 

1
0;1 0 1

1
0;2 0 2

1
1;1 1 1

1
1;2 1 2

С O M ,
С O M ,
С O M ,
С O M .

 

 

 
 
  






  (17) 

При дальнейшем уменьшении sv  альяс M2 начинает 
пересекаться с альясом M1, а O-1 – с O0. Одновременно 
элементарный паттерн P начинает пересекаться с аль-
ясами M3 и O-2, которые ведут себя при уменьшении sv
аналогично альясам M2 и O-1. 

Д. Дискретизация при s1/ ( 1) 1/ ,m m     

где m  
Структура элементарного паттерна для некоторого 

значения sv  из указанного интервала представлена на 
рис. 9. 

Структура паттерна одинакова для всех m. Структура 
такая же, как для структуры на рис. 8, в). Разница 
заключается в степени алиасинга.  

 
Рис. 9. Элементарный паттерн  
при s1/ ( 1) 1 /m m    ( )m  

Заключение 
В статье исследуется новый подход авторов к пред-

ставлению эффектов субнайквистовой дискретизации 
полосовых сигналов. Подход основан на изучении вза-
имного расположения альясов, образующихся в резуль-
тате равномерной субнайквистовой дискретизации. При 
этом допускается наложение спектров произвольной 
степени. Такое углубленное исследование необходимо 
для разработки алгоритмов анализа сигналов с исполь-
зованием многоканальной многочастотной субнайкви-
стовой дискретизации. Новый подход основан на пред-
ставлении произвольного частотного положения алья-
сов как функции двух переменных. Одна переменная – 
это фактическая частота f, а другая – нижняя граница 
части спектра дискретизированного сигнала, располо-
женной на положительных частотах fl. Такое представ-
ление приводит к образованию узорчатой структуры. 
Эта структура образуется за счет периодического по-
вторения определенного элементарного паттерна вдоль 
обеих осей плоскости (f, fl). Поэтому достаточно изучить 

только эту закономерность. Структура этого паттерна 
была проанализирована при различных соотношениях 
ширины спектра и частоты дискретизации. 

Исследование выполнено при поддержке гранта 
Российского научного фонда № 23-29-00864, 
https://rscf.ru/project/23-29-00864/. 
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Существующие критерии классификации таких опасных 
метеоявлений, как ливень, гроза, град в метеолокаторах име-
ют явные недостатки, поскольку сформированы отдельно для 
каждого явления, основаны только на данных о высотном рас-
пределении радиолокационной отражаемости атмосферы, 
температуры воздуха. В работе показано, как критерии клас-
сификации опасных метеоявлений должны быть оптимизирова-
ны по следующим направлениям: использование в критериях 
классификации информации о высотном распределении макси-
мальных значений не только отражаемости, но и турбулентно-
сти атмосферы; классификация должна строиться в соответ-
ствии с единым выбранным критерием различения статисти-
ческих гипотез. В статье представлены особенности обра-
ботки сигналов при радиолокационной классификации опасных 
метеоявлений. Показано, что радиолокационная классификация 
опасных метеоявлений кучево–дождевой облачности решается 
в виде задачи различения статистических гипотез в условиях 
априорной неопределенности, которая устраняется экспери-
ментальным путем получения и обработки обучающих выборок, 
расчета оценок вероятностного описания признаков и их ис-
пользования в алгоритме в качестве истинных значений. 

УДК 551.501.81 

ОСОБЕННОСТИ ОБРАБОТКИ СИГНАЛОВ ПРИ РАДИОЛОКАЦИОННОЙ 
КЛАССИФИКАЦИИ ОПАСНЫХ МЕТЕОРОЛОГИЧЕСКИХ ЯВЛЕНИЙ  
КУЧЕВО-ДОЖДЕВОЙ ОБЛАЧНОСТИ 

Васильев О.В., д.т.н., профессор, профессор кафедры «Техническая эксплуатация радиоэлектронного 
оборудования воздушного транспорта» МГТУ ГА, e-mail: vas_ov@mail.ru  
Галаева К.И., к.т.н., старший преподаватель кафедры «Техническая эксплуатация радиоэлектронного 
оборудования воздушного транспорта» МГТУ ГА, e-mail:ks.galaeva@mail.ru  
Шепеть И.П., к.т.н., профессор, профессор кафедры «Информационные системы и электроника» 
Технологического института сервиса (филиал Донского ГТУ в г. Ставрополь), 
e-mail: ship.1963@mail.ru 
Никоненко А.В., к.т.н., ведущий инженер МТУСИ, e-mail: nikon-74@mail.ru 

FEATURES OF SIGNAL PROCESSING IN RADAR CLASSIFICATION OF DANGEROUS 
METEOROLOGICAL PHENOMENA OF CUMULONIMBUS CLOUDS 

Vasiliev O.V., Galaeva K.I., Shepet’ I.P., Nikonenko A.V. 
The existing classification criteria for such dangerous meteorological phenomena as rainfalls, thunderstorms, hail in weather radars 
have obvious shortcomings, since they are formed separately for each phenomenon, based only on data on the altitude distribution 
of atmospheric radar reflectivity, air temperature. The paper shows how the criteria for classifying dangerous meteorological phe-
nomena should be optimized in the following areas: using information on the altitude distribution of maximum values of not only re-
flectivity, but also atmospheric turbulence in the classification criteria; the classification should be built in accordance with a single 
selected criterion for distinguishing statistical hypotheses. The article presents the features of signal processing in the radar classifi-
cation of dangerous meteorological phenomena. It is shown that radar classification of dangerous meteorological phenomena of 
cumulonimbus clouds is solved in the form of a problem of distinguishing statistical hypotheses under conditions of a priori uncer-
tainty, which is eliminated experimentally by obtaining and processing training samples, calculating estimates of the probabilistic de-
scription of features and using them in the algorithm as true values. 

Key words: weather radar, classification by hazard level, dangerous meteorological phenomena of cumulonimbus 
clouds, signal processing, problem of distinguishing statistical hypotheses. 

 
Ключевые слова: метеорологический радиолока-

тор, классификация по степени опасности, опасные ме-
теоявления кучево-дождевой облачности, обработка 
сигналов, задача различения статистических гипотез.  

Обоснование актуальности 

Классификация опасных метеоявлений по отражен-
ным радиолокационным сигналам является классиче-
ской задачей различения статистических гипотез в 
условиях априорной неопределенности (когда неиз-
вестны ни виды, ни параметры законов распределения 
вероятностей информационных параметров), т.е. зада-
чей распознавания. Решение предполагает формирова-
ние алфавита классов (ограниченного множества клас-
сифицируемых явлений), словаря признаков (информа-
тивных параметров отраженного сигнала), который для 
принятого критерия различения гипотез обеспечивает 
классификацию явлений с заданной достоверностью. Из 
данной постановки следует, что процесс классификации 
состоит из множества этапов, каждый из которых опре-
деляет последовательность и особенности обработки 
сначала сигналов, а затем информации. 

В существующих отечественных метео РЛС класси-
фикация осуществляется по данным высотного распре-
деления радиолокационной отражаемости и профиля 
температуры [1-3]. В иностранных метео РЛС для зада-
чи классификации метеоявлений дополнительно ис-

пользуются поляриметрические методы [4-7].  
Использование вероятностного подхода при класси-

фикации опасных метеоявлений (ОМЯ) требует более 
строгого и обобщенного взгляда на решение данной за-
дачи и, как следствие, широкого набора методов обра-
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ботки сигналов и информации. Причем, последователь-
ность этапов обработки предполагает пошаговое обоб-
щение информации с выдачей на заключительном эта-
пе однозначных и достоверных решений.  

Настоящая работа детально описывает особенности 
обработки сигналов как при формировании метеопро-
дуктов в современном отечественном метеорологиче-
ском радиолокационном комплексе (МРЛК БЗ «Мо-
нокль»), так и при классификации ОМЯ кучево-дожде-
вой облачности (КДО) на основании вероятностного 
подхода. МРЛК БЗ удовлетворяет современным между-
народным и отечественным требованиям [8-12]. 

Особенности формирования метеорологических 
продуктов в МРЛК БЗ «Монокль» 

МРЛК БЗ представляет собой радиолокационный ком-
плекс, который осуществляет излучение зондирующих 
радиоимпульсов, приём, предварительную обработку сиг-
налов и их оцифровку, первичную, вторичную и третичную 
обработку информации и её отображение. МРЛК БЗ со-
стоит из приемо-передающего антенного модуля со 
спецвычислителем, автоматизированного рабочего места 
оператора МРЛК БЗ (рис. 1). Антенна – щелевая антенная 
решетка ЩАР диаметром около 760. Тактико-технические 
характеристики МРЛК БЗ указаны в табл.1. Приемо-
передающий модуль – когерентный, твердотельный с воз-
можностью формирования и обработки сложных сигналов, 
изменения частоты повторения импульсов, длительности 
интервалов когерентной обработки.  

Предварительная обработка реализована в виде со-
гласованного приема отраженных импульсных сигналов. 
Первичная обработка по импульсно-доплеровскому 
принципу предполагает (рис. 2):  

– накопление оцифрованного отраженного сигнала, 
формирование пачек, получение спектра сигнала в каж-
дом канале дальности для каждого углового положения 
антенны (в так называемых «конических сечениях»); 

– фильтрация импульсных помех, отражений от то-
чечных объектов, формирование порога, обнаружение 
сигнала и оценка его мощности в каждом канале даль-
ности; 

– оценка значений радиальной скорости и ширины 
спектра сигнала для всех каналов дальности, в которых 
обнаружен сигнал. 

Вторичная обработка информации обеспечивает вы-
числение значений отражаемости атмосферы в каждом 
элементарном объеме, а также турбулентности и ради-
альной скорости. Отражаемость вычисляется по извест-
ным выражениям [13], а турбулентность, оцениваемая 
через удельную скорость диссипации турбулентной 
энергии – посредством достаточно сложного простран-
ственного корреляционного анализа значений централь-
ной доплеровской частоты и ширины спектра. Детальное 
описание этих операций выходит за рамки данной ста-
тьи. Результатом вторичной обработки информации яв-
ляется формирование выходных векторов отражаемо-
сти, радиальных скоростей и турбулентности в каждом 
канале дальности для конических сечений. 

 

 
 а) РЛС Монокль-К100 б) радиопрозрачный колпак в) автоматизированное рабочее место 

Рис. 1. Состав метеорологического радиолокационного комплекса ближней аэродромной зоны 

 
Рис.2. Структура первичной импульсно-доплеровской обработки отраженного сигнала 
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Таблица 1. Тактико-технические характеристики МРЛК БЗ 

Наименование характеристики Значение 
Мощность излучения в импульсе 100 Вт 
Рабочая частота 9330-9375 МГц 
Длительность импульса 2.1, 4.1, 8.1, 16 мкс 
Период повторения импульсов 243-495 мкс 
Тип антенны ЩАР с горизонт поляризацией 
Ширина диаграммы направленности антенны ДНА 3º 15' х 3º 15' 
Метеорологический радиолокационный потенциал не менее 250 дБ 
Размеры диаметр – 115 см, высота – 110 см 
Масса не более 70 кг 

 

Третичная обработка сигналов предполагает: 
– формирование декартова пространства в координа-

тах X, Y, Z относительно РЛС с размером ячеек 1х1х1 км; 
– оценку значения метеопараметра для центра 

ячейки, которая формируется в результате усреднения 
всех измерений, попавших в ячейку; 

– расчет промежуточных значений метеопараметров 
через градиент между соседними точками как по верти-
кали; так и по горизонтали; 

– формирование карт метеоявлений с оконтуриванием, 
градацией опасности и построением любых сечений. 

На рис. 3 представлена карта классифицируемых 
реальных метеоявлений от облачности до торнадо в 
радиусе 100 км. Причем классификация в данном при-
мере производится «старым» неоптимизированным 
методом. 

 
Рис. 3. Карта метеорологических явлений в ячейках  

при круговом обзоре МРЛК БЗ 

Общая структура обработки РЛ сигналов  
при классификации опасных метеорологических 
явлений кучево-дождевой облачности 

Байесовская теория принятия решений составляет 
основу статистического подхода к задаче классифика-
ции сигналов, образов, явлений природы [14]. Поста-
новка задачи распознавания метеорологических явле-
ний в рассматриваемом случае предполагает решение 
следующих взаимосвязанных задач: 

– формирование алфавита классов, то есть набора 

классифицируемых метеорологических явлений КДО, в 
нашем случае ливень – гроза – град – другое явление 
(термин «другое явление» используется в «строгой» 
постановке задачи, так как алфавит должен формиро-
вать полную группу событий); 

– выбора признакового пространства, то есть тех ин-
формационных параметров, которые выделяются из 
отраженного радиолокационного сигнала и позволяют 
классифицировать явления с заданной достоверностью; 

– определения достаточной статистики, то есть того 
вероятностного описания признаков и явлений, которые 
будут использованы при распознавании (обоснование 
матрицы потерь, наличие априорной информации, плот-
ности распределения вероятностей информационных 
параметров, степень корреляции признаков и т.д.); 

– выбора критерия распознавания (байесовского, 
максимума функции правдоподобия, Неймана – Пирсона 
и т.д.) и требований к достоверности, которые и опреде-
ляют значение порога принятия решений. 

В общем случае, данная последовательность задач 
является итерационной и предполагает коррекцию ал-
фавита, признаков и критериев для достижения требуе-
мой достоверности распознавания при ограничениях на 
ресурсы разного рода. 

Обозначим метеоявление символом ω, причем для 
ливня ω = л, для грозы ω = гз, а для града ω = гд. Вели-
чина ω рассматривается как случайная величина в том 
смысле, что состояние природы не известно. В нашем 
случае положим, что априорные вероятности событий 
также не известны. Для упрощения задачи без потери 
качества ее решения примем очевидное допущение: 
достаточной статистикой в рассматриваемом слу- 
чае является условная плотность распределения при-
знака х при наблюдении метеоявления ωi р(х/ωi), где 

{л,  гз,  гд}.i  Данная статистика позволяет сформиро-
вать решение на основе метода максимального правдо-
подобия: выбирается то решение ω = i, для которого  

( ) ( )kip x w p x w  для всех k ≠ i (1) 
Достаточные статистики, сформированные без ис-

пользования сведений, содержащихся в априорном рас-
пределении и функции потерь, определяют структуру 
оптимального решения и оптимальный способ обработки 
информации. В этом заключается их универсальность и 
адекватность при решении целого ряда прикладных за-
дач синтеза информационных систем в условиях апри-
орной неопределенности [15].  
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Степень априорной неопределенности может быть 
различной. В рассматриваемом случае имеет место 
полная априорная неопределенность, когда неизвестны 
ни виды, ни параметры законов распределения вероят-
ностей информационных параметров. Казалось бы, при 
такой полной априорной неопределенности статистиче-
ский синтез невозможен, потому что нельзя ни сформу-
лировать, ни вычислить критерий оптимальности. Одна-
ко вместо неизвестных распределений могут быть ис-
пользованы эмпирические данные, которые называют 
обучающими выборками. 

В [14] показано, что задача преодоления полной 
априорной неопределенности может быть решена в три 
этапа: 

– на первом этапе, исходя из физической сущности 
решаемой задачи, определяется класс возможных рас-
пределений вероятностей, ограниченный некоторым 
семейством с произвольными значениями параметров 
(в нашем случае семейство распределений, близких к 
гауссовому); 

– на основании принятых в статистической теории 
непараметрических критериев согласия (Колмогорова, 
Смирнова, 2  Пирсона и т.д.) проверяются гипотезы о 
соответствии данных наблюдения одному из заданных в 
семействе теоретическому распределению вероятно-
стей информационного параметра [16]; 

– на третьем этапе уже параметрическая неопреде-
ленность устраняется использованием в качестве ис-
тинных значений параметров их оптимальных оценок (в 
нашем случае выборочных математических ожиданий 
(МО) и среднеквадратических отклонений (СКО)). 

Этап устранения параметрической  
априорной неопределенности  

В представленной работе обучающая выборка полу-
чена экспериментальным путем. С целью получения 
статистических описаний вероятностных распределений 
отражаемости и удельной скорости диссипации турбу-
лентной энергии атмосферы (EDR) был проведен ана-
лиз реальных радиолокационных сигналов, отраженных 
от метеоявлений ливень, гроза, град. Исследования 
проводились в Верхнем Поволжье в теплый период 
2021, 2022 гг. В качестве инструмента получения исход-
ных данных была использована радиолокационная ин-
формация, полученная на выходе МРЛК БАЗ «Монокль.  

Методика проведения экспериментальных исследо-
ваний и структура обработки сигналов представлена на 
рис. 4. Валидация полученных данных о классифициро-
ванных метеорологических явлениях в МРЛК БАЗ про-
водилась путем сопоставления с достоверными метео-
рологическими источниками: наземными метеорологи-
ческими станциями (МС), расположенными в городах 
Старица, Волоколамск, Можайск и Гагарин и сертифи-
цированными радиолокаторами сети Росгидромет типа 
ДМРЛ-С. В случае наблюдения явления по карте МРЛК 
БАЗ и карте МРЛС за указанный интервал времени, 
явление считается подтверждённым по карте МРЛК БАЗ 
в том случае, если совпадает в пространстве с явлени-
ем на карте МРЛС, в противном случае – неподтвер-
ждённым. Всего было проведено по 50 подтвержденных 

опытов для каждого ОМЯ.  

 
Рис. 4. Процесс проведения экспериментальных исследований 

Для получения распределения параметров атмосфе-
ры на каждой высоте с дискретом 1 км были оценены 
следующие значения: максимальная отражаемость в 
облаке Zmax, а также максимальное значение EDR в 
облаке (EDRmax). Пример распределения максимальной 
отражаемости для серии экспериментов для ливня 
представлен на рис. 5. 

 
Рис. 5. Пример экспериментальных данных 

 распределения максимальной отражаемости  
по высотам для ливневых осадков 

Структура статистической обработки эксперимен-
тальных данных представлена на рис. 6 [16-18]. 

 
Рис. 6. Процесс статистического анализа  

экспериментальных данных 

В качестве примера на рис. 7 представлена гисто-
грамма относительных частот величины Н(Zmax). 

 
Рис. 7. Гистограмма относительных частот высоты  

максимальной отражаемости 
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 а) б) 

Рис. 8. Плотность распределения вероятности H(Zmax) (а) и EDRmax (б) для рассматриваемых метеоявлений 

Проверка различных гипотез о виде распределений 
по критерию согласия 2  Пирсона для уровня значимо-
сти 0.01 показала максимальное соответствие экспери-
ментальных относительных частот обобщенному рас-
пределению Рэлея – Райса  

2 2

22
02 2( | , ) ,

xx xf x e I


 
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 


    

 
   (2) 

где I0(z) – модифицированная функция Бесселя первого 
рода нулевого порядка, μ = 2 - МО и σ = 2.5 – СКО. Резуль-
тат аппроксимации гистограммы теоретическим законом 
представлен на также рис. 7. Параметры μ и σ в строгом 
смысле не являются МО и СКО, однако соответствующим 
образом отражают форму распределения [19-21].  

На основании разработанной методики был также 
проведен статистический анализ параметра H(EDRmax) 
для ливня, а также амплитудного распределения пара-
метров отражаемости и EDR (Zmax, EDRmax) для гроз 
и града. Распределения Райса для параметров H(Zmax) 
и EDRmax, рассматриваемых метеоявлений отображе-
ны на рис. 8, а) и 8, б).  

Полученные, по результатам вычислений высотного 
распределения отражаемости и EDR для ливня, гроз и 
града параметры µ, σx распределения Райса указаны в 
табл. 2. По сути, данная таблица представляет собой па-
раметрическое описание априорного словаря признаков 
классификации ОМЯ «ливень-гроза-град». 

Таблица 2. Параметры распределения Райса  
для ливня, грозы и града 

Параметр Ливень Гроза Град 
H(Zmax) 

МО µ= 2 µ = 3,5 µ = 4 
СКО σx = 2,5 σx = 3 σx = 4 

 H(EDRmax) 
МО µ = 2 µ = 3 µ = 4 
СКО σx = 2,5 σx = 4 σx = 4,5 

 Zmax 
МО µ = 22 µ = 29 µ = 42 
СКО σx = 7 σx = 8 σx = 10 

 EDRmax 
МО µ = 0.2 µ = 0.5 µ = 0.61 
СКО σx = 0.2 σx = 0.12 σx = 0.08 

Таким образом, статистический анализ данных обу-
чающей выборки показал, что плотности распределения 
максимальной отражаемости и турбулентности по зна-
чениям и высоте имеют уникальный параметрический 

характер, описываемый обобщенным законом Райса. 
Априорная неопределенность устранена.  
Этап выбора рабочего словаря признаков 

Формирование рабочего словаря признаков из апри-
орного определяется на основании информативности 
(разделяющей способности) признаков для конкретного 
критерия классификации. Для критерия максимума 
правдоподобия (1) с учетом (2) сформируем порог для 
альтернативы , ;   i k i k  в виде решения уравнения  

 
2 2

2

2 2

2

2*
02 2

2*
02 2

*,

*
0,

i

i

k

k

x µ

i
пор

i i

x µ

k

k k

x µxh i k e I

x µx e I





 

 







 
  

 

 
  

 

 (3) 

Примером решения пары уравнений для плотностей 
распределения вероятностей р(Zmax/ωi), где 

{л,  гз,  гд}i  (рис. 9, а) является формирование пары 

порогов: л,гз maxh (Z ) 27.4 дБZ;  гз,гд maxh (Z ) 37.2 дБZ.  

Для любого признака x из множества Zmax, EDRmax, 
H(Zmax), H(EDRmax) может быть сформирована полная 
матрица вероятностей классификации [14] 

ЛЛ ЛГЗ ЛГД

ГЗЛ ГЗГЗ ГЗГД

ГДЛ ГДГЗ ГДГД

( ) ( ) ( )
( ) ( ) ( ) ( ) ,

( ) ( ) ( )

Р x Р x Р x
Р x Р x Р x Р x

Р x Р x Р x
   (4) 

элементы которой вычисляются как  
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где диагональные элементы определяют достоверность 
принятия правильных решений. Применение в качестве 
пределов интегрирования 0 и ∞ не совсем корректно, 
однако постановка задачи анализа информативности 
признаков классификации ОМЯ это вполне допускает. 
Для случая, представленного на рис. 9, а, получим  

 
0,715 0,263 0,022

Р Zmax 0,347 0,463 0,19 ,
0,05 0,218 0,732

   (6) 

В (6) при невысоких величинах вероятностей пра-
вильной классификации наблюдаются значительные 
вероятности перепутывания. Для признака H(Zmax)  

пороги имеют значения л,гз max)h (H(Z ) 4.63км;  

гз,гд maxh H(Z ) 6.53 км,( )   (рис. 9, б). 

Высокая площадь перекрытия кривых проявляется в 
неприемлемых значениях элементов всей матрицы 
классификации, каждого в своем качестве.  

0,759 0,153 0,088
Р(H(Zmax)) 0,518 0, 205 0, 277 .

0,374 0,177 0,449
   (7) 

Практически аналогичная картина наблюдается для 
признака H(EDRmax),  где пороги имеют значения: 

л,гзh (EDRmax) 5.09  км; гз,гдh (H(EDRmax)) 6.89  км 

0,791 0,156 0,053
Р(H(EDRmax)) 0,463 0,220 0,317 .

0,359 0, 208 0,433
   (8) 

Не намного лучше ситуация складывается для при-
знака EDRmax,  где пороги равны л,гзh (EDRmax)   

2 30.39 м ;с  2 3
гз,гд .h H(EDRmax) 0.54 м с  В случае с 

грозой достоверность принятия решений опять непри-
емлема. 

0,712 0, 205 0,083
Р(EDRmax) 0,146 0, 440 0, 414 .

0,002 0,170 0,828
   (9) 

Таким образом, наихудшую информативность при 
классификации опасных метеоявлений кучево-дождевой 
облачности имеют признаки H(Zmax), H(EDRmax). 
Большей разделяющей способностью обладают призна-
ки Zmax, EDRmax, однако и для них достоверность 
классификации гроз неприемлема. 

Очевидно, что заданная достоверность классифика-
ции может быть достигнута при совместном использова-
нии признаков в правилах принятия решений в виде 
многомерных плотностей распределения вероятностей. 

Кроме того, на данном этапе примем допущение о 
независимости признаков, что серьезно упростит реше-
ние задачи без существенного влияния на результат.  

Для принятого допущения о статистической незави-
симости признаков их n-мерная плотность распределе-
ния вероятностей имеет вид 

1 1 1 2 2 2
1

( , , , , , , , , ,, ) , ,( )
n

n n n i i i
i

p x µ x µ x µ p x µ   


   (10) 

где ( , , )i i ip x µ   определена в виде (1), а пороги приня-
тия решений определяются решением уравнений 

1 1

( , , ) , ,( ) 0.
n n

i i i k k k
i i

p x µ p x µ 
 

      (11) 

На рис. 10 изображен пример двумерной плотности 
распределения р(Zmax, Н(Zmax)/ωi) с порогами в виде 
кривых, формирующих области принятия решений. 

А на рис. 11 – для случая р(Zmax, EDRmax/ωi). 

 
 а) б) 

Рис. 9. Пороги принятия решений для параметра Zmax (а) и H(Zmax) (б) 

 
Рис. 10. Области решений для p(Zmax, H(Zmax) 
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Рис. 11. Области решений для p(Zmax, EDRmax) 

 
Рис. 12. Структура алгоритма радиолокационной классификации опасных метеоявлений кучево-дождевой облачности  

на основании байесовского подхода 

Полные матрицы вероятностей для двумерных за-
дач имеют вид: 

0,753 0, 243 0,004
Р(Zmax,  H(Zmax))  0,320 0,505 0,175 ,

0,040 0,216 0,744
  (12) 

0,761 0,175 0,064
Р(EDRmax,  H(EDRmax))  0,146 0,463 0,391 ,

0,003 0,181 0,816
  (13) 

Для наиболее информативных признаков Zmax и 
EDRmax матрица равна 

 
0,769 0,161 0,070

Р Zmax,  EDRmax 0,141 0,683 0,176 .
0,031 0,159 0,810

  (14) 

Матрица (14) ожидаемо имеет лучшие показатели по 
достоверности классификации. Проанализируем рост 
этого показателя с увеличением размерности решаемой 
задачи. Получим 
Р(Zmax,  H(Zmax),  H(EDRmax))  

0,809 0,174 0,017
0,231 0,553 0, 216 .
0,075 0,173 0,752




 (15) 

Р(EDRmax,  H(EDRmax),  H(Zmax))  
0,788 0,146 0,066
0, 251 0, 497 0,252 .
0,049 0,144 0,807




 (16) 

Р(Zmax,  H(Zmax),  EDRmax)
0,800 0,195 0,005
0,162 0,691 0,147 .
0,024 0,159 0,817




 (17) 

Р(Zmax,  H(Zmax),  EDRmax,  H(EDRamx))
0,839 0,138 0,023
0,145 0,701 0,154 .
0,022 0,157 0,821




 (18) 

В матрице вероятностей (18), как и ожидалось, до-
стигнуты максимальные значения вероятностей пра-
вильной классификации.  
Этап классификации опасных метеоявлений 

Таким образом, задача радиолокационной классифи-
кации опасных метеоявлений кучево-дождевой облачно-
сти решается в виде задачи различения статистических 
гипотез в условиях априорной неопределенности, кото-
рая устраняется путем (в данном случае эксперимен-
тальным) получения и обработки обучающих выборок, 
расчета оценок вероятностного описания признаков и их 
использования в алгоритме в качестве истинных значе-
ний. Структура алгоритма радиолокационной классифи-
кации опасных метеоявлений кучево-дождевой облачно-
сти на основании байесовского подхода выглядит сле-
дующим образом – рис. 12. 

Обучение алгоритма формируется в результате по-
следовательного выполнения операций верхней строч-
ки. После обучения пороги принятия решения фиксиру-
ются для ограниченного набора признаков, значения 
которых на этапе классификации поступают на решаю-
щее устройство (классификатор). 
Заключение  

Предложен единый критерий классификации ОМЯ 
КДО: ливень – гроза – град, основанный на статистиче-
ской теории различения гипотез по информации, полу-
ченной с выхода МРЛК БЗ «Монокль». Задача распозна-
вания связана с последовательностью выполнения 
предварительной обработки сигналов, их оцифровки, 
первичной, вторичной и третичной обработки информа-
ции и её отображения. 
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Наибольшие трудности связаны с этапом обучения 
по представительной выборке как по времени, так и по 
объему обрабатываемой информации. Крайне важны 
допущения, принимаемые в процессе устранения апри-
орной неопределенности. Очевидно, что существует 
пространственная вариативность исходных данных по-
строения алгоритмов. Это связано с особенностями 
климатической зоны, в которой установлен радиолока-
ционный метеодатчик. Таким образом, обучение и 
настройка алгоритмов классификации должны произво-
дится непосредственно в месте установки. Кроме того, 
необходимо устранять имеющую место временную из-
менчивость параметров атмосферы. Таким образом, 
процесс обучения должен идти параллельно процессу 
классификации. 

В дальнейшем авторами будут проведены исследо-
вания, посвящённые реализации выбора информатив-
ных признаков и определения их пороговых значений за 
счёт использования алгоритмов машинного обучения и 
искусственного интеллекта. 

Статья подготовлена в рамках поддержанного 
грантом Российского научного фонда проекта  
№ 23-29-00450 «Исследование отражательных и тур-
булентных характеристик атмосферы с использова-
нием нового отечественного метеорологического 
радиолокационного комплекса ближней зоны «Мо-
нокль» в различных климатических зонах в интересах 
повышения достоверности автоматической класси-
фикации опасных метеоявлений». 
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Компьютерная плантография – инструментальный метод диагно-
стики состояния стоп на основе анализа снимков плантарной поверх-
ности стоп под нагрузкой. Важным этапом при работе с медицинскими 
изображениями является их унификация для облегчения анализа. С этой 
целью в статье предложены критерии оценки предобработки таких 
изображений для упрощения их анализа. Также предложена методика 
обработки снимков плантарной поверхности стоп, реализованная на 
языке Python, с применением алгоритмов компьютерного зрения и ис-
кусственного интеллекта. Полученные результаты могут быть при-
менены в научных целях, практической медицинской деятельности, при 
подборе и изготовлении ортопедических изделий для стопы. 

УДК 617.3:617-7 

ЦИФРОВАЯ ОБРАБОТКА ЭЛЕКТРОННЫХ ПЛАНОГРАММ С ПРИМЕНЕНИЕМ 
ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАК ЭТАП АВТОМАТИЗАЦИИ 
ПЛАНТОГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ 

Михайлишин В.В., младший научный сотрудник лаборатории инновационных и экспертно-реабилита-
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DIGITAL PROCESSING OF ELECTRONIC PLANTOGRAMS USING ARTIFICIAL 
INTELLIGENCE TECHNOLOGIES AS A STAGE OF AUTOMATION OF PLANTOGRAPHIC 
RESEARCH 

Mikhailishin V.V., Smirnova L.M., Cherkashin S.O. 
Computer plantography is an instrumental method for diagnosing the condition of the feet based on the analysis of images of the 
plantar surface of the feet under load. An important step in working with medical images is their unification to facilitate their analysis. 
To this end, the article proposes criteria for evaluating the preprocessing of such images to simplify their analysis. A technique for 
processing images of the plantar surface of the feet, implemented in Python, using computer vision and artificial intelligence algo-
rithms, is also proposed. The results obtained can be applied for scientific purposes, practical medical activities, in the selection and 
manufacture of orthopedic products for the foot. 

Key words: computer plantography, artificial intelligence, image processing, foot diagnostics. 

 
Ключевые слова: компьютерная планто-

графия, искусственный интеллект, обработка 
изображений, диагностика стоп. 

Введение 

Компьютерная плантография – исследова-
ние, применяемое для оценки деформаций 
стоп пациента по результатам анализа цифро-
вого снимка отпечатка подошвенной поверхно-
сти стоп под нагрузкой собственного веса ис-
следуемого. Данный метод широко применяет-
ся в практической деятельности врачей физи-
ческой и реабилитационной медицины, ортопедов, трав-
матологов [1]. 

Однако важно учесть тот факт, что, согласно дей-
ствующему на территории Российской Федерации госу-
дарственному стандарту ГОСТ Р 52623.1-2008, данное 
обследование могут проводить лишь специалисты, 
имеющие среднее медицинское образование по специ-
альностям сестринское дело, лечебное дело или выс-
шее медицинское образование по специальностям ле-
чебное дело, педиатрия [2]. 

Ввиду этого производителям компьютерных планто-
графов приходится балансировать между стремлением 
к повышению информативности исследования и сниже-
нию времени, необходимого специалисту на определе-

ние диагностически значимых ключевых точек и обла-
стей на изображении стопы. 

Таким образом, появляется задача оптимизации 
плантографического обследования и повышения его 
эффективности, которая в значительной степени опре-
деляется объёмом ресурсов, затраченных на проведе-
ние обследований, и степенью достоверности получен-
ных результатов. В этапы решения данной задачи вхо-
дят разработка и внедрение методов предобработки 
снимков. Такие методы представляют собой инструмент 
для ускорения процесса анализа данных и повышения 
точности результатов диагностики. Особое внимание 
при этом уделяется созданию однотипных снимков, по-
скольку они способствуют упрощению дальнейшего про-
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цесса разметки и классификации объектов на изобра-
жениях. 

Предобработка медицинских изображений предпо-
лагает применение различных методов преобразования 
изображений, таких как фильтрация, коррекция яркости 
и контраста, а также устранение шумов и артефактов с 
целью повышения качества моделей машинного обуче-
ния для разметки этих снимков при их дальнейшем ана-
лизе [3]. Эти процедуры также направлены на унифика-
цию и улучшение качества изображений, что, в свою 
очередь, способствует улучшению точности и надежно-
сти получаемых результатов [4]. 

Цель исследования: разработка методики предоб-
работки снимков компьютерной плантографии для ав-
томатизации плантографических исследований на ос-
нове методов искусственного интеллекта. 

Материалы и методы 

В процессе работы были проанализированы 4000 
цифровых плантограмм, полученных способом оптиче-
ского планшетного сканирования плантарной поверхно-
сти стоп человека в позе стоя под нагрузкой тела. Этот 
набор данных в виде цветных изображений был полу-
чен на плантографах одной и той же модели (РУ РЗН 
2018/7709). 

Для обработки данных был выбран язык программи-
рования Python. В качестве основных инструментов ис-
пользованы библиотеки numpy и pandas для работы с 
массивами данных. 

Обработка изображений выполнена с применением 
библиотек Python Image Library (PIL) и OpenCV, обеспе-
чивающих широкие возможности для обработки и ана-
лиза изображений. 

Для построения, обучения, оценки и использования 
нейронных сетей применена библиотека TensorFlow, 
которая является инструментом для решения задач 
машинного обучения и анализа данных. 

Выбор данных инструментов обусловлен их широ-
ким функционалом, эффективностью работы, что обес-
печило возможность использования современных мето-
дов анализа данных и машинного обучения в проводи-
мом исследовании. 

Результаты 

На всех снимках была выявлена общая структура 
изображения, включающая левую и правую стопы, рам-
ку изображения, являющуюся отображением части 
плантографа, и неоднородный темный фон. Пример 
компьютерной плантограммы представлен на рис.1.  

Для всех снимков было характерным содержание 
мелких частиц грязи, неоднородность фона планто-
граммы.  

В качестве критериев исключения изображений из 
работы были приняты признаки, подтверждающие 
нарушение правил проведения плантографического 
обследования: 

– присутствие засветов, вызванных внешними ис-
точниками света; 

– отображение элементов одежды, перевязочных 
материалов и тейпов на изображениях стоп; 

– присутствие чулочных изделий на изображениях 
стоп; 

– неправильная установка стоп на плантографе; 
– отсутствие на изображениях одной из стоп. 

 
Рис. 1. Пример исходной цифровой плантограммы 

По этим критериям из 4000 снимков набора данных 
были отбракованы для исследования 37 изображений.  

Для обеспечения унификации изображений в рамках 
исследования были установлены следующие критерии 
оценки результатов предобработки снимков: 

– отображение только одного объекта на изображе-
нии – для обеспечения единообразия снимков в наборе 
данных, что достигается путём разделения плантогра-
фии на 2 изображения, содержащих по одной стопе; 

– расположение объекта (стопы) в центре изображе-
ния, что обеспечивает равномерность распределения 
данных в анализируемом наборе данных; 

– однотонный фон снимка, ярко контрастирующий с 
отображаемым объектом; 

– определённое (единое) разрешение изображения 
для обеспечения консистентности и согласованности 
данных при их последующей обработке и анализе. 

Для предобработки снимков был разработан алго-
ритм, структурно-логическая схема которого представ-
лена на рис. 2.  

 
Рис. 2. Структурно-логическая схема работы алгоритма 

предобработки плантограмм 

Этапы предобработки снимка 

Первым этапом предобработки снимка является об-
резка краёв изображения с отображением рамок планто-
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графа. Для этой процедуры было определено количе-
ство рядов пикселей с каждой стороны изображения, 
которые были поочерёдно удалены со снимка.  

На следующем этапе была проведена изоляция 
объектов, представленных на изображении на отдель-
ных снимках. 

Для решения данной задачи произведено преобра-
зование изображения из цветного в черно-белое.  

Входные изображения представлены в трехканаль-
ном формате, включающем отдельные матрицы для 
интенсивности красного (R), зеленого (G) и синего (B) 
цветов. В отличие от этого, черно-белое изображение 
содержит только один канал, который определяется 
интенсивностью белого цвета. Значения интенсивности 
для каждого канала находятся в диапазоне от 0 до 255. 

Для перевода изображения в серый цвет для каждо-
го пикселя была применена формула:  
Y = 0.299R+0.587G+0.114B, 
где: Y – искомый пиксель черно-белого изображения, R, 
G, B – пиксель каналов интенсивности соответственно 
красного, зелёного и синего цвета исходного изображе-
ния.  

Далее для снижения цифрового шума и обработки 
световых пятен, которые могут появляться на стекле 
плантографа при сканировании, на чёрно-белом изоб-
ражении был применён фильтр Гаусса: 

 
2 2

22
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где: x и y – координаты точки относительно центра ядра, 
σ – стандартное отклонение гауссовского распределе-
ния, контролирующее степень размытия [5].  

В данном исследовании было применено стандарт-
ное отклонение со значением 10. Чем выше значение σ, 
тем сильнее размытие и тем меньше деталей остается 
на изображении после обработки.  

После применения фильтра Гаусса требуется ин-
вертировать цвета снимка. 

Для монохромного изображения, где интенсивность 
каждого пикселя представлена одним числом в диапа-
зоне от 0 до 255, максимальное значение интенсивно-
сти составляет 255, следовательно 0 – черный цвет, 
255 – белый [6].  

Формула операции инвертирования имеет вид: 
I' = 255 − I,  
где: I – обозначает исходную интенсивность пикселя в 
изображении, I' представляет интенсивность пикселя 
после инверсии.  

Посредством этой операции темные области изоб-
ражения преобразуются в светлые, а светлые – в тем-
ные.  

Далее к изображению был применён пороговый 
фильтр c пороговым значением равным 242. Таким обра-
зом, после применения порогового фильтра изображение 
представляет собой бинарный массив, где каждый пик-
сель принимает значение 1, если его интенсивность 
больше 242, и 0 – в противном случае. Это преобразова-
ние упрощает последующую обработку изображения, 
поскольку оно сокращает количество возможных значе-
ний интенсивности пикселей до двух, что облегчает вы-

деление и анализ объектов на изображении [7].  
Далее для обработки полученного изображения при-

менялся алгоритм маркировки связанных компонент, 
который позволяет определить и классифицировать от-
дельные объекты на основе их пространственной свя-
занности [8]. Каждому уникальному объекту присваива-
ется уникальный идентификатор (метка), что облегчает 
их последующий анализ и обработку. В результате алго-
ритм возвращает два основных элемента: матрицу ме-
ток и общее количество обнаруженных объектов. Мат-
рица меток представляет собой структуру данных, в ко-
торой каждому пикселю исходного изображения сопо-
ставляется значение, указывающее на принадлежность 
к определенному объекту [9]. Это позволяет визуализи-
ровать распределение и пространственное расположе-
ние объектов на изображении. Общее количество объ-
ектов представляет количественную оценку числа от-
дельных элементов, присутствующих на изображении. 
Пример такой обработки представлен на рис. 3.  

 
Рис. 3. Пример определения объектов  

на бинаризированном снимке 
Далее проводилась подготовка к извлечению изоли-

рованных изображений объектов.  
Исходное изображение преобразуется в массив 

(array) для удобства обработки. Затем, в зависимости от 
количества обнаруженных объектов, определяется раз-
мерность целевого массива для хранения изолирован-
ных изображений. Если количество объектов превышает 
десять, то создаётся массив с десятью слоями, соответ-
ствующими первым десяти объектам, в противном слу-
чае – массив с количеством слоев, равным числу обна-
руженных объектов. Каждый слой массива предназначен 
для хранения изображения одного объекта и инициали-
зируется нулями, что подготавливает основу для после-
дующего заполнения данными об объектах: проводится 
итерация по каждому пикселю исходного изображения 
для заполнения предварительно подготовленного масси-
ва изолированными изображениями объектов. Для каж-
дой позиции (x, y) в изображении проверяется метка при-
надлежности к одному из первых десяти объектов. Если 
метка пикселя входит в диапазон от 1 до 10, данные о 
цвете пикселя копируются в соответствующий слой мас-
сива изолированных изображений, при этом индекс в 
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массиве корректируется с учетом смещения на единицу, 
так как нумерация объектов начинается с 1, а индексация 
массива – с 0. Таким образом каждый слой массива по-
степенно заполняется пикселями, соответствующими 
одному из объектов, позволяя впоследствии анализиро-
вать их в изоляции от остальной части изображения. 
Пример такой обработки представлен на рис. 4. 

 
Рис. 4. Пример извлеченных изолированных объектов,  

содержащихся в многомерном массиве данных 
По такой методике была проведена обработка набо-

ра данных из 3976 снимков компьютерной плантогра-
фии, не попадающих под критерии исключения, о кото-
рых шла речь выше. В процессе этой процедуры для 
каждого изображения были получены массивы снимков, 
в которых каждому изолированному изображению был 
присвоен один из трёх классов: отсутствие стопы, изоб-
ражение левой стопы, изображение правой стопы. Дан-
ный процесс разметки массивов позволил создать 
набор данных, содержащий в общей сложности 16313 
аннотированных изображения, в которых содержалось 

7952 изображений с метками классов, соответствующих 
изображению левой или правой стопы, а также 8361, на 
которых стопы отсутствовали.  

Размеченный набор данных был разделен на две ча-
сти: тренировочную выборку, составляющую 80% от об-
щего числа изображений, и валидационную выборку, 
составляющую 20 %. Такое разделение было проведено 
для обеспечения оценки качества модели на данных, не 
участвующих в процессе обучения [10]. 

В качестве архитектуры модели была выбрана свёр-
точная нейронная сеть, реализованная с использовани-
ем фреймворка TensorFlow. Предложенная архитектура 
модели искусственного интеллекта для решения задачи 
классификации изображений состоит из: входного слоя 
масштабирования изображения к разрешению 256 x 256 
пикселей; трех сверточных слоев с функцией активации 
ReLU (rectified linear unit) – f(x) = max(0, x) и максималь-
ным пулингом; слоя выравнивания; двух полносвязных 
слоев, последний из которых имеет 3 выхода и предна-
значен для классификации изображений по заданным 
классам (рис. 5). 

Была выбрана данная архитектура сверточной 
нейронной сети, так как слой масштабирования позво-
ляет унифицировать размеры входящего изображения. 
Три свёрточных слоя обеспечивают последовательное 
выделение признаков на разных уровнях абстракции, а 
максимальное объединение в них сокращает размер-
ность данных, сохраняя наиболее важную информацию. 
Выравнивающий, полносвязный и выходной слои обес-
печивают объединение всех ранее полученных призна-
ков и выполняют трёхклассовую классификацию снимка. 

При обучении модели использовался алгоритм опти-
мизации Adam в сочетании с функцией потерь Sparse 
Softmax Cross-Entropy Loss и метрикой точности 
(Accuracy). Количество эпох обучения составило пять, а 
размер пакета данных – 128 снимков. 

 
Рис. 5. Архитектура сверточной нейронной сети для классификации снимков 
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Рис. 6. Графики изменения основных метрик в процессе обучения модели искусственного интеллекта  

для тестовой и валидационной выборки: а) для точности, б) для оценки функции потерь  
Точность классификации по завершении обучения  

на валидационных данных достигла 1, а на тренировоч-
ных – 0.9992. При этом значения функции потерь соста-
вили 0.0009 на валидационных данных и 0.0025 – на 
тренировочных. Такие результаты свидетельствуют о 
высокой точности и эффективности модели классифи-
кации изображений по заданным классам. Визуализа-
ция изменений точности и потерь в зависимости от эпо-
хи обучения представлена на рис. 6. 

После обучения модель была интегрирована в про-
цесс предварительной обработки изображений, где 
каждому изолированному снимку в массиве был назна-
чен соответствующий класс.  

 
Рис. 7. Результат предобработки  
электронной плантограммы 

Изображения, не содержащие левую или правую 
стопу, были удалены из массива, а каждое из оставших-
ся подвергалось дополнительной обработке, в ходе 
которой стопа описывалась прямоугольником, а осталь-
ная часть изображения вне прямоугольника удалялась. 
Затем прямоугольник выравнивался (вместе с содер-

жащимся в нём объектом) таким образом, чтобы его 
продольная ось (следовательно, и ось стопы) была па-
раллельна вертикальной оси изображения.  

Завершающим этапом обработки являлось создание 
рамок монохромного черного цвета вокруг прямоуголь-
ника, что позволило центрировать прямоугольник (сле-
довательно, и стопу) внутри изображения с заданным 
размером.  

Данные манипуляции способствовали улучшению ка-
чества и унификации входных данных для последующе-
го анализа. Пример предобработанных таким образом 
снимков представлен на рис. 7. 

Заключение 

Предложенная процедура обработки электронных 
плантограмм обеспечивает исключение посторонних 
объектов с изображений, что повышает чистоту исход-
ных данных, и способствует уменьшению вероятности 
ошибок при дальнейшем анализе. Однородность разме-
ра всех обработанных изображений обеспечивает уни-
фикацию входных данных и поддержание их консистент-
ности, что важно для автоматизированного анализа 
электронных плантограмм, в том числе с применением 
технологий искусственного интеллекта. 

Ключевым аспектом такой обработки является цен-
трирование анализируемого объекта, в данном случае 
стопы, что обеспечивает его стабильное положение в 
пределах изображения и существенно облегчает задачу 
последующего распознавания и анализа формы и струк-
туры опорного отпечатка плантарной поверхности. Бла-
годаря такому подходу алгоритмам анализа изображе-
ний на основе искусственного интеллекта не потребует-
ся корректировать свои параметры под различное рас-
положение стопы на снимке. 

Дополнение изображений монохромным черным фо-
ном улучшает контрастность анализируемого объекта, 
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что является важным фактором для повышения точно-
сти алгоритмов компьютерного зрения. Это особенно 
значимо, учитывая, что анализ плантограмм, связан с 
выявлением границ и контуров объекта. Черный фон 
устраняет влияние фоновых шумов и способствует бо-
лее четкому выделению характеристик объекта, таких 
как очертания, текстура и внутренние структуры стопы. 

Предложенная методика предобработки цифровых 
плантограмм позволила создать унифицированную базу 
данных, которая может быть применена в медицинской 
практике и научных исследованиях, где требуется ана-
лиз морфо-анатомической структуры стопы. Кроме того, 
созданный набор данных из однотипных снимков ком-
пьютерной плантографии представляет собой иннова-
ционный этап в разработке моделей узкого искусствен-
ного интеллекта для анализа плантограмм, что откры-
вает новые перспективы для автоматической разметки 
и классификации изображений, значительно ускоряя 
процесс анализа данных, снижая нагрузку на специали-
стов.  
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Рассматривается аналитико-нейросетевой подход к иденти-
фикации объектов Земли на основе анализа данных гиперспек-
тральной съемки. Показано, что основную неопределенность в зна-
ниях о видеоинформационном тракте вносят атмосфера Земли и 
коэффициент спектральной передачи гиперспектральной съемоч-
ной аппаратуры. Показана эффективность рассматриваемого под-
хода с использованием натурных гиперспектральных данных от 
космической  российской системы «Ресурс-П». 

УДК 004.932 

АНАЛИТИКО-НЕЙРОСЕТЕВОЙ ПОДХОД К ИДЕНТИФИКАЦИИ ОБЪЕКТОВ ЗЕМЛИ 
ПО ДАННЫМ ГИПЕРСПЕКТРАЛЬНОЙ СЪЕМКИ 

Еремеев В.А., НИИ «Фотон», Рязанский государственный радиотехнический университет им. В.Ф. Уткина, 
аспирант кафедры «Космические технологии», e-mail: foton@rsreu.ru 

ANALYTICAL AND NEURAL NETWORK APPROACH TO EARTH OBJECT 
IDENTIFICATION BY DATA OF HYPERSPECTRAL SURVEY 

Eremeev V.A. 
An analytical neural network approach to the identification of Earth objects based on the analysis of hyperspectral survey data is con-
sidered. It is shown that the main uncertainty of the knowledge of the video information path is caused by the Earth's atmosphere and 
the spectral transmission coefficient of hyperspectral sensor. The effectiveness of the considered approach using full-scale hyperspec-
tral data from the Russian space system «Resurs-P» is shown. 

Key words: Hyperspectral images of the Earth, end-to-end video information path, radiometric correction of hyper-
spectral data, object identification, convolutional neural networks. 

 
Ключевые слова: гиперспектральные 

изображения Земли, сквозной информацион-
ный тракт, радиометрическая коррекция ги-
перспектральной аппаратуры, идентификация 
объектов, сверточные нейронные сети.  

Введение. Постановка задачи 

Традиционные подходы к идентификации 
объектов на космических изображениях земной поверх-
ности базируются на структурно-пространственном ана-
лизе данных панхроматической и многозональной 
съёмки в одном или ограниченном числе спектрозо-
нальных диапазонов [1-3]. В последние 20 лет в нашей 
стране и особенно за рубежом активно развиваются 
системы гиперспектральной съёмки Земли [4-7]. Такие 
системы синхронно по времени могут сформировать 
более ста изображений одной и той же сцены в очень 
узких соприкасающихся спектральных диапазонах, так 

называемый гиперкуб ( ( , ) ; 1, , 1, ,kB B m n k K m M    

1, ),n N  где ,m n  – координаты точек растра изобра-
жений, однозначно геометрически связанные с соответ-

ствующими точками Земли; 1,k K  – номер спектраль-
ного диапазона, которому однозначно соответствует 
длина волны отраженного от Земли излучения 

, 1, .k k K   В результате каждая точка гиперкуба 

( , )m n  характеризуется спектральной характеристикой: 

, 1, ,kСХ B k K   что создает предпосылки для раз-
работки алгоритмов пространственно-частотного анали-
за гиперспектральных изображений и построении на 
этой основе более эффективных процессов идентифи-
кации объектов земной поверхности [8-10].  

В работах [11, 12] обоснована необходимость полу-
чения знаний о сквозном информационном тракте (СИТ) 
с целью повышения эффективности нейросетевой 
идентификации объектов Земли по данным гиперспек-
тральной съёмки. Главной задачей настоящей статьи 

является поиск более глубоких знаний по СИТ и их це-
ленаправленное применение при проектировании нейро-
сетевых технологий распознавания природных объектов 
на гиперспектральных снимках. Основной трудностью в 
решении этой задачи является случайная изменчивость 
свойств атмосферы при прохождении через нее падаю-
щего излучения от Солнца на Землю и отраженного от 
объектов земной поверхности в направлении на космиче-
ский аппарат. Такое же замечание относится и к коэффи-
циенту спектральной передачи сигнала гиперспектраль-
ной аппаратуры. Поэтому для решения поставленной 
задачи привлекается модель переноса излучения «6S» 
[13] и данные об опорных полигонах «RadCalNet» [14]. 

Модель видеоинформационного тракта 

Рассмотрим формальное представление сквозного 
информационного тракта (СИТ) космических систем ги-
перспектральной съемки Земли [16]:  

,П П О OЗA A КА
В Н Н BS S S S B       (1) 

где S  – спектральные плотности энергетической яркости 
(СПЭЯ) излучения на верхней (индекс « »В ) и нижней 
(индекс « »H ) границе атмосферы для падающего (ин-
декс « »П ) излучения Солнца и отраженного (индекс 
« »)О ) в направлении на космический аппарат (КА);   – 
коэффициенты спектральной передачи лучистой энер-
гии через атмосферу ( ),А  отражения от Земли ( )З  и 

гиперспектральную аппаратуру (ГСА) ( ),КА  установ-

ленную на КА; B  – гиперкуб на выходе ГСА.  
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Из (1) следует коэффициент спектральной передачи 
всего СИТ: 

,П
СИТ В А З КАB S        (2) 

где А  – оценка коэффициента спектральной передачи 
атмосферы падающего и отраженного излучения. В 
схеме (1): ,П

ВS  П
НS  – функции от длины волны 

, 1, ,k k K   (или номера спектрального канала ГСА 

1, );k K  ,O
BS  B  – функции трех переменных, коорди-

нат сканируемых точек Земли ( , )x y  или одноименных 

точек гиперкуба ( , ).m n  Функция П
ВS  известна с доста-

точно высокой точностью и неизменна во времени. Ко-
эффициент спектрального пропускания атмосферы А  
вносит основную неопределенность при анализе и 
оценке .СИТ  В настоящее время существуют весьма 
сложные многопараметрические модели атмосферы 

,А  например модель «6S» [13]. Для контроля и калиб-
ровки ГСА в ходе полетной эксплуатации требуется 
сверка и коррекция КА  по данным сканирования ГСА 
радиометрических опорных наземных полигонов (ОП), 
например полигоны специальной службы «RadCalNet» 
[14]. Функции ОП могут быть частично возложены на 
созданную за многие годы базу коэффициентов спек-
трального отражения типовых объектов земной поверх-
ности [15].  Из (1) и (2) могут быть рассмотрены следу-
ющие задачи. 

Задача 1. Оценка текущего состояния и калибровка 
ГСА, т.е. уточнение .КА  Для её решения используются 
информационные ресурсы модели «6S» и ОП 
«RadCalNet». Эту задачу из (1) можно представить как: 

,O
КА BB S   используя возможности «6S» и ОП в части 

оценки ,O
BS  а также ГСА в части получения ,B  в том 

числе и для опорного полигона.  
Задача 2. Оценка / ( ),З А КАB     т.е. оценка КСО 

объектов земной поверхности, указанных на гиперкубе 
оператором. Здесь необходимо знать актуальные функ-
ции А  и .КА  

Информационная поддержка СИТ  
Модель «6S» имитирует процесс переноса излуче-

ния от Солнца и позволяет получить функцию ( )О
ВS   на 

основе ( ),П
ВS   используя модели атмосферы и отраже-

ния от объектов земной поверхности. Важным элементом 
модели «6S» является возможность получения ( )О

ВS   в 

произвольной шкале длин волн , ,i i   1, ,i I  где i  
– ширина i -го спектрального диапазона.  

Система ОП (RadCalNet) предоставляет возмож-
ность, используя наземные средства гиперспектральных 
измерений опорного полигона, через каждые 30 минут 
получать данные об ОП: ( ) , ( ),О

В ЗS     а также пара-

метры атмосферы, необходимые для расчета ,А  в ре-

гулярных отсчетах длин волн ,i i      

10 .const нм   

Обычно ГСА формирует дискретные отсчеты гипер-
куба в квазирегулярной по   и   сетке частот, в кото-

рой 1 , 1, .k k k const k K         Поэтому для оценки 

и калибровки ,О
КА ВB S   а затем ,O П

З Н НS S   необ-
ходимо данные от опорного полигона на уровне отсче-
тов О

ВS  и B  свести к единой сетке частот. В самом про-
стом случае эту операцию можно выполнить путём ку-
сочно-линейной интерполяции по двум вариантам.  

Вариант 1. Нерегулярные отсчеты , 1, ,kB k K  по-
лученные ГСА по опорному полигону, не изменяются, а 

,
О
В kS  формируется по регулярным отсчетам системы ОП, 

т.е. , , 1, ,О
В iS i I  отображаются в нерегулярные отсчеты 

, , 1, ,О
В kS k K  с использованием кусочно-линейной ин-

терполяции (рис. 1, а). 
Интерполированное значение определяется как: 

 , 1 ,
, ,

1

, 1, ,
О О
В i В iО О

В k В i k i
i i

S S
S S k K 

 





    


  (3) 

где i  и 1i   – ближайшие отсчеты слева и справа от 

.k  После чего , , , 1, .О
КА k k В kB S k K    

Вариант 2. Нерегулярные отсчеты , 1, ,kB k K  

отображаются в регулярной сетке отсчетов , 1, ,iB i I  с 

использованием кусочно-линейной интерполяции, а ,
О
В iS  

не изменяются (рис. 1, б): 

 
 а)  i k    б) k i   

Рис. 1. Отображение данных  
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 1

1

, 1, ,k k
i k i k

k k

B B
B B i I 

 





    


  (4) 

где 1.k i k      В результате , , 1, .О
КА i В iB S i I     

Кусочно-линейная интерполяция вносит ошибку: 
вместо фактического значения ,

О
В kS  дает ,

О
В kS  (рис. 

1, а), а вместо iB  дает iB  (рис. 1, б). Для численного 
сопоставления точности кусочно-линейного отображе-
ний i k   и ,k i   в условиях отсутствия точных 

значений ,
O
B kS  и ,iB  предлагается следующий подход. 

Он основан на том, что линейная интерполяция приво-

дит к сглаживанию kS  и iB  по отношению к исходным 

kS  и ,kB  что должно отражаться в снижении оценок 
дисперсий интерполированных значений по отношению 
к исходным.   

Выполняется оценка дисперсий для последователь-
ностей , , 1, ,O

B iS i I  и , , 1, ,O
B kS k K  (вариант 1), а также 

для последовательностей , 1, ,kB k K  и , 1, ,iB i I  

(вариант 2). Опуская индексы « O » и « В », для первого 
и второго варианта соответственно имеем: 

1 (1 ), 1, ;k i i i iS S S k K       (5) 

1 (1 ), 1, ;i k k k kB B B i I       (6) 

В (5) и (6) i  и k  – принимают равновероятные 
случайные значения от 0 до 1 в интервалах 

1[ , ]i i i     и не зависят от отсчетов 1( , )i iS S   и 

1( , ).k kB B   Случайный характер i  и k  определяют 

случайные величины k  и i  – точки попадания в ин-

тервалы соответственно  1[ , ],i i    1[ , ]k k    (см. рис. 1): 

( ) ,i k i i      ( ) .k i k k      

Пусть получены оценки дисперсий ˆ ( ),D S  ˆ ( )D S  и 

ˆ ( ),D B  ˆ ( ).D B  Оценку точности интерполяции по вари-
антам 1 и 2 можно выполнить по показателям  

1

2

ˆ ˆ ˆ[ ( ) ( ) ] ( ) ,
ˆ ˆ ˆ[ ( ) ( ) ] ( ).

D S D S D S

D B D B D B





 

 




  (7) 

В 1  используются модельные математически рас-

считанные данные, а в 2  – результаты преобразова-

ния ГСА, искаженные различного рода шумами, прежде 
всего электронным шумом преобразователей светового 
сигнала в электрический [16, 17]. Этот фактор значи-
тельно снижает точность кусочно-линейной интерполя-
ции по варианту 2.  

По результатам съемки опорного полигона ГСА кос-
мического аппарата «Ресурс-П» получены следующие 
оценки: 1 0.15,   2 0.32,   которые характеризуют 

степень отличия дисперсий исходных последователь-
ностей S  и B  по отношению к сглаженным отсчетам 
после кусочно-линейной интерполяции (чем точнее ин-
терполяция, тем меньше 1  и 2 ).  Важным доводом в 

пользу варианта 1, т.е. работа с данными, определен-
ными в регулярной сетке частот, является ориентация 
на применение нейросетевых технологий. 

Радиометрическая калибровка ГСА 

В ходе наземной (предполетной) калибровки ГСА на 
его вход от специальной установки подается излучение 

,Э
kS  СПЭЯ которого примерно постоянно в рабочем 

диапазоне длин волн. Выходной сигнал ГСА , 1, ,kB k K  
корректируется с использованием коэффициентов ли-
нейных преобразований ,ka  kb  так, чтобы 

, 1, ,Э
k k k ka B b S k K    где Э

kS  – эталонный сигнал от 
установки. В ходе полетной эксплуатации соответствие 
между Э

kB  и Э
kS  может недопустимо изменяться, что 

требует периодической калибровки ГСА по данным ска-
нирования опорных полигонов.  

Пусть ,
O
B kS  – сигнал от опорного полигона на входе 

ГСА, а kB  на его выходе, 1, .k K  Спектральная пере-

даточная характеристика ГСА , , 1, ,O
КА k B kB S k K    

может значительно отличаться от результатов предпо-
летных измерений , .Э Э

ГСА k k kB S   В данном случае 

радиометрическая калибровка ГСА, т.е. уточнение ,КА  
может быть выполнена путем проведения следующих 
этапов.   

Этап 1 – выполняется оценка степени совпадения 
O
BS  от опорного полигона и результатов моделирования 

6S. Предварительно в 6S загружаются данные от ОП: 

( );З З ОП   параметры атмосферы (атмосферное дав-

ление, температура, оптическая толщина аэрозоля, кон-
центрация водяного пара и озона и др.). Результаты да-
ли высокую степень совпадения.  

Этап 2 – оценка А  на момент съёмки опорного по-

лигона. В модели 6S устанавливается 1,З   т.е. исклю-
чается модель процесса отражения от объектов Земли. 
В результате получаем ,O П

B В АS S    .O П
А B ВS S    

Этап 3 – сигналы B  и O
BS  «очищаются» от атмо-

сферы: * ,AB B   * .O O
B B AS S   Эта процедура позво-

ляет исключить в B  и O
BS  остаточные искажающие дей-

ствие атмосферы и получить более «гладкие» функции 
*B  и *.O

BS  
Этап 4 – радиометрическая калибровка ГСА. Для 

каждого спектрального канала ГСА определяется пара 
коэффициентов ,ka  ,kb  1, ,k K  по которым формиру-

ется откалиброванный гиперкуб ** .k k k kB a B b    Для 

этого используются , 1, ,kb k K  характеризующие тем-
новые сигналы видеотракта. Они отдельно оцениваются 
при полном отсутствии излучения на входном зрачке 
ГСА. Мультикативные коэффициенты определяются из 
условия * *

,( )k k k B ka B b S    и равны * *
, / ( ),k B k k ka S B b   

1, .k K  В результате скорректированный коэффициент 



 

 
 
28 

спектральной передачи ГСА **
, 1,A k   а скорректирован-

ный гиперкуб ** *
, , 1, .k B kB S k K   При этом действие 

атмосферы не изменяет **
, ,A k  т.к. ,A k  в равной степени 

присутствует как множитель в **
kB  и *

, .B kS  

Альтернативный подход к реализации этапа 4 может 
быть основан на полиноминальном приближении 

** *( ),B B  при котором достигается приемлемое от-

клонение **B  от * .BS  Например, для всего диапазона 

изменения 1,k K  находятся ,a  ,b  c  при помощи 

параболического приближения по критерию **B   
2

* 2 * *
,

1

( ( ) ) min .
K

k k B k
k

a B b B c S


        Такой подход по 

отношению к выше рассмотренному обеспечивает до-
статочно высокое приближение. Но главным его досто-
инством является автоматическая оценка темнового 
сигнала в виде коэффициента ,c  если на практике он 
мало меняется в зависимости от .k   

На рис. 2 представлены результаты радиометриче-
ской калибровки в относительных единицах, в виде ко-
эффициента спектральной передачи излучения П

ВS  на 

вход и выход ГСА [13, 14]: ( ) / ( cos ),П
S ВS S      где 

  – зенитный угол Солнца в момент съемки, 
( ) , (6 ) , ,O O

B BS ХS ОП S S BЪ  6{ , , }.S ОП S B     

Использование нейронных сетей 

В работе [10] определено несколько направлений по 
использованию знаний СИТ для улучшения качества 
обработки гиперспектральной информации нейронными 
сетями. Одно из них заключается в корректировке сним-
ков для удаления нерелевантной информации из дан-
ных, поступающих на вход нейронной сети. Для оценки 
перспективности данного направления реализова- 
но обучение двух идентичных моделей сверточных 
нейронных сетей (СНС), выполняющих идентификацию 
объектов. 

В качестве архитектуры СНС использовалась сеть, 
приведенная в [18], дополненная слоем «batch 
normalization» перед слоем «dense». Выборка для обу-
чения сформирована на основе результатов сканирова-
ния опорных полигонов «RadCalNet» гиперспектральной 
аппаратурой КА «Ресурс-П». Снимки получены за раз-
ные даты и при различном состоянии атмосферы. Пер-
вый набор данных содержал исходный сигнал ГСА, а 
для второго набора, из данных были удалены атмо-
сферные и радиометрические искажения по описанной 
выше технологии.  

Перед обучением СНС выполнено снижение размер-
ности гиперспектральных данных до 20 отсчетов на пик-
сель методом главных компонент, базис которого фор-
мировался на основе всех исходных гиперспектральных 
изображений, а не отдельно по каждому снимку. Эффек-
тивность этого  решения  обоснована в [19].  Формирова- 

 
 а) б) 

 
 в) г) 

Рис. 2. Радиометрическая калибровка ГСА: а) сопоставление ОП  и 6 ;S  б) оценка ;А  в) коррекция атмосферы *
B  и * ;S  

г) результаты калибровки **
B  и *

ОП  (полиномиальное приближение) 
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 а) б) 

 
 в) г) 

Рис. 3. Результаты идентификации объектов: а) фрагмент ГСИ;  б) эталон;  
в) выход СНС, обученной на исходном сигнале ГСА; г) выход СНС, обученной на откалиброванных данных 

ние эталонной маски для обучения выполнено эксперт-
ным методом и главным образом опиралось на анализ 
спектральных характеристик откалиброванных изобра-
жений и их сопоставление с эталонами из спектральной 
библиотеки [15]. Всего на изображениях выделено 6 
классов: вода, растительность, поле, почва, застройка, 
облака.  

Полученные данные нарезаны на фрагменты разме-
ром 11 11 20   и разделены на подвыборки для обуче-
ния, валидации и тестирования. На рис. 3 представле-
ны: фрагмент гиперспектрального изображения 
(рис. 3, а) (синтез RGB-каналов видимого спектра), эта-
лонная маска (рис. 3, б), прогноз СНС, обученной на 
исходном сигнале ГСА (рис. 3, в), а также прогноз СНС, 
обученной на откалиброванных данных (рис. 3, г). 

Таблица 1.Метрики качества идентификации для СНС, 
обученной на исходном сигнале ГСА 

Класс/Метрика P R F 

Вода  1.00 0.98 0.99 

Растительность 0.99 0.83 0.90 

Поле 0.88 0.97 0.92 

Почва 0.87 0.71 0.78 

Застройка 0.80 0.74 0.77 

Облака 0.97 0.84 0.90 

Для оценки качества идентификации объектов ис-
пользовалась точность (P), полнота (R) и F-мера (F) 
[20]. Эти метрики показывают меру сходства (от 0 до 1) 
двух моделей, в данном случае прогноза обученной 

СНС и фактического эталона, заданного оператором. В 
табл. 1 и табл. 2 представлены вычисленные метрики 
при обучении по исходным и откорректированным дан-
ным ГСА спутника «Ресурс-П».  

Таблица 2. Метрики качества идентификации для СНС, 
обученной на откалиброванных данных 

Класс/Метрика P R F 

Вода  1.00 0.99 0.99 

Растительность 0.96 0.93 0.96 

Поле 0.96 0.97 0.97 

Почва 0.89 0.88 0.89 

Застройка 0.83 0.89 0.86 

Облака 0.95 0.90 0.92 

На основе полученных результатов можно сделать 
вывод о том, что «очистка» сигнала от  нерелевантной 
информации ощутимо повышает точность идентифика-
ции объектов. Это определяется тем, что прогноз 
нейронной сети основывается исключительно на отра-
жающих свойствах объектов поверхности Земли, что 
снижает степень неопределенности от ухудшения пара-
метров гиперспектральной аппаратуры. 

Заключение 

В результате проведенных исследований: 
1. Рассмотрен аналитико-нейросетевой подход к 

идентификации объектов земной поверхности по дан-
ным гиперспектральной съемки. Определены звенья 
СИТ, которые описаны строго аналитически – это мо-
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дель излучения от Солнца, падающего на верхнюю гра-
ницу атмосферы, и модель отражения излучения от 
объектов земной поверхности. Выделены звенья СИТ, 
которые вносят основную неопределенность – это ат-
мосфера и видеотракт ГСА.  

2. Представлены технологии калибровки ГСА по 
наземным опорным полигонам и учета атмосферных 
искажений, которые позволяют снизить неопределен-
ность в коэффициентах спектральной передачи ГСА и 
атмосферы. Экспериментально, с использованием дан-
ных гиперспектральной съемки со спутника «Ресурс-П», 
показана эффективность предложенных решений.  
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Предлагается новый алгоритм высокоточного оценивания до-
плеровского центроида по данным, полученным радиолокаторами с 
синтезированной апертурой антенны (РСА) космического базирова-
ния в маршрутном режиме съемки, на основе амплитудного анализа 
изображений, синтезированных из радиоголограммы по двум непере-
крывающимся субапертурам. Оценивание включает два аспекта: 
оценивание относительного значения доплеровского центроида (в 
пределах частоты повторения зондирующих импульсов) и оценива-
ние доплеровской неопределенности (неоднозначности). Высокая 
точность оценок относительного значения доплеровского центрои-
да достигается за счет анализа амплитудного азимутального спек-
тра сигнала не радиоголограммы, а синтезированных из нее изобра-
жений, на которых импульсные отклики перестают быть простран-
ственно протяженными и становятся компактными. Анализ ампли-
тудного азимутального спектра при этом выполняется независимо 
во множестве непересекающихся малых фрагментов, образующих 
один большой фрагмент изображения, с последующим усреднением 
полученных оценок в пределах большого фрагмента. Более высокая 
точность оценок доплеровской неопределенности достигается за 
счет более строгой математической модели пересчета геометри-
ческих рассогласований изображений, синтезированных по двум непе-
рекрывающимся субапертурам, в доплеровские поправки, учитываю-
щей найденные ранее поправки к относительному значению допле-
ровского центроида и азимутальную диаграмму направленности 
антенны РСА. В работе приводятся результаты предложенного 
алгоритма, полученные при обработке данных от зарубежного ра-
диолокационного космического аппарата «COSMO-SkyMed». Показа-
но, что за счет более высокой точности предложенного алгоритма в 
большинстве случаев удается на 1–2 сократить число итераций 
синтеза изображения и оценивания его параметров для получения 
точных оценок доплеровского центроида. Кроме того, в отличие от 
известных амплитудных алгоритмов, предложенный алгоритм ста-
бильно позволяет выполнить оценивание доплеровского центроида, 
когда ошибка знания его относительного значения близка к половине 
частоты повторения зондирующих импульсов. 
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DOPPLER CENTROID ESTIMATION IN PRIMARY PROCESSING  
OF SPACEBORNE STRIPMAP SAR RAW DATA BY AMPLITUDE ANALYSIS 

Ushenkin V.A. 
The paper proposes a new algorithm for high-precision Doppler centroid estimation from spaceborne StripMap synthetic aperture radar 
(SAR) data, based on amplitude analysis of images, obtained from raw data, divided into two non-overlapping subapertures (two looks). 
The estimation includes two aspects, which are the baseband Doppler centroid evaluation (within the pulse repeat rate) and the Doppler 
ambiguity evaluation. High accuracy of the baseband Doppler centroid estimates is achieved by analyzing the amplitude azimuthal 
spectrum not of the raw data, but of the images obtained from it, in which the impulse responses cease to be spatially widespread and 
become compact. The amplitude azimuthal spectrum analysis is performed independently in a set of non-overlapping small fragments 
that form one large fragment of the image, with subsequent weighted averaging of the obtained estimates within the large fragment. 
Higher accuracy of the Doppler ambiguity estimates is achieved due to a more precise mathematical model for recalculating range 
mismatch of the images obtained from two looks into Doppler corrections, which takes into account previously found corrections to the 
baseband Doppler centroid and the azimuthal SAR antenna pattern. The paper presents the results of the proposed algorithm obtained 
by processing the COSMO-SkyMed satellite data. It is shown that due to the higher accuracy of the proposed algorithm in most cases it 
is possible to reduce the number of iterations of raw data processing and evaluation of its parameters by 1–2 to obtain accurate esti-
mates of the Doppler centroid. In addition, unlike the known amplitude algorithms, the proposed algorithm stably allows estimating the 
Doppler centroid when the baseband Doppler centroid error is close to the half of the pulse repeat rate. 

Key words: Doppler centroid, Doppler ambiguity, synthetic aperture radar (SAR), raw SAR data, satellite, primary 
processing. 
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Введение 

При первичной обработке информации от 
РСА космического базирования выполняется 
синтез радиолокационного изображения из 
траекторного сигнала РСА – радиоголограммы 
[1–3]. Одним из параметров синтеза является 
доплеровский центроид – значение доплеров-
ского сдвига частоты эхо-сигналов, соответ-
ствующее центру диаграммы направленности 
антенны РСА. Для расчета значения доплеров-
ского центроида требуется знание угловой ори-
ентации космического аппарата и углов уста-
новки антенны РСА на космический аппарат. 
Угловая ориентация космического аппарата [4] 
обычно измеряется с помощью блоков опреде-
ления координат звезд (БОКЗ). Один БОКЗ 
обеспечивает высокую точность измерения 
направления своей оптической оси и более 
низкую точность измерения поворота вокруг 
этой оси. Поэтому для получения высокой точ-
ности всех углов Эйлера необходима работа 
нескольких БОКЗ, установленных на КА под 
углом друг к другу [5]. В ходе эксплуатации кос-
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мического аппарата отдельные БОКЗ могут выходить из 
строя, из-за чего точность измерений угловой ориен- 
тации, а соответственно и точность расчетов доплеров-
ского центроида будет снижаться, оказывая негативный  
эффект на качество изображений, синтезируемых из  
радиоголограмм. Кроме того, космический аппарат в  
ходе вывода на орбиту подвергается существенным  
деформациям, из-за чего изменяются углы установки  
антенны РСА, измеренные в наземных условиях. Нако-
нец, в ходе дальнейшей эксплуатации могут проявлять-
ся деформации, связанные с температурной неста-
бильностью. Все это негативно отражается на точности  
расчетов доплеровского центроида. Таким образом,  
помимо аналитического расчета на основе измерений  
угловой ориентации и установочных углов, необходимо  
иметь альтернативные способы оценивания доплеров-
ского центроида, которые должны применяться при не-
достаточной точности измерений БОКЗ или при уточне-
нии установочных углов в ходе геометрической калиб-
ровки космического аппарата [6]. 

Таким альтернативным способом является оценива-
ние доплеровского центроида путем анализа сигнала 
радиоголограммы. При этом абсолютное значение до-
плеровского центроида дцf  декомпозируется на относи-

тельное значение и доплеровскую неопределенность:  

дц дц отн дц имп ,f f M f   

где дц отн имп имп[ / 2,   / 2)f f f   – относительное значе-

ние, импf  – частота повторения зондирующих импуль-

сов, дцM Z  – доплеровская неопределенность, Z  – 

множество целых чисел. 
Относительное значение доплеровского центроида и 

доплеровская неопределенность оцениваются отдельно 
с помощью различных алгоритмов. 

Известно несколько алгоритмов оценки относитель-
ного значения доплеровского центроида по сигналу ра-
диоголограммы. В амплитудном алгоритме [7, 8] выпол-
няется анализ усредненного амплитудного азимуталь-
ного спектра фрагмента радиоголограммы и находится 
точка его максимума. В фазовом алгоритме [8, 9] оце-
нивается средний набег фазы комплексного сигнала 
вдоль столбца в пределах фрагмента радиоголограм-
мы. Основным недостатком обоих алгоритмов является 
снижение точности получаемых оценок, когда в анали-
зированный фрагмент входит только часть импульсного 
отклика на сверхъяркий объект. Из-за пространственной 
протяженности импульсных откликов на радиоголо-
грамме (в пределах нескольких тысяч пикселей по каж-
дому измерению) такие случаи встречаются часто, а 
выявление их затруднено. 

Для устранения негативного влияния простран-
ственно протяженных импульсных откликов оценка от-
носительного значения доплеровского центроида может 
выполняться по сигналу не радиоголограммы, а синте-
зированного из нее изображения, на котором импульс-
ные отклики становятся компактными. При этом могут 
применяться те же самые алгоритмы, что и для ра-
диоголограммы [10]. 

В задаче оценивания доплеровской неопределенно-

сти по сигналу радиоголограммы также известно не-
сколько различных алгоритмов. Фазовые алгоритмы [8, 
11, 12] используют зависимость абсолютного значения 
доплеровского центроида от несущей частоты зондиру-
ющих импульсов. Для этого широкополосный эхо-сигнал 
разделяется на несколько узкополосных, из каждого из 
которых получается своя радиоголограмма со смещен-
ной несущей частотой. Для каждой радиоголограммы с 
помощью фазового подхода оценивается относительное 
значение доплеровского центроида, а вариация значе-
ний оценок, полученных для различных смещенных по 
несущей частоте радиоголограмм, пересчитывается в 
доплеровскую неопределенность. Недостаток фазовых 
алгоритмов – погрешности оценивания относительных 
значений доплеровского центроида, вызванные протя-
женностью импульсных откликов, приводят к искажению 
получаемых оценок доплеровской неопределенности. 

Известен также амплитудный алгоритм оценивания 
доплеровской неопределенности [8, 13]. В нем полная 
апертура (полоса доплеровских частот) разбивается на 
две неперекрывающихся субапертуры, по каждой из ко-
торых синтезируется радиолокационное изображение со 
сниженным азимутальным пространственным разреше-
нием. В основу определения доплеровской неопреде-
ленности положена зависимость величины миграции 
сигнала по каналам дальности от доплеровского сдвига. 
Если при синтезе изображений использовалось пра-
вильное значение доплеровского центроида, то в обеих 
субапертурах миграция дальности полностью устраня-
ется, а геометрические рассогласования между двумя 
изображениями отсутствуют. Если же при синтезе изоб-
ражений использовалось неправильное значение до-
плеровской неопределенности, то в одной из субапертур 
миграция дальности устраняется недостаточно, а в дру-
гой – избыточно. Из-за этого возникает горизонтальное 
смещение двух изображений, тем большее, чем больше 
ошибка в доплеровской неопределенности. Путем кор-
реляционно-экстремального совмещения изображений 
это смещение может быть найдено и пересчитано в по-
правку к доплеровской неопределенности. Основное 
достоинство данного алгоритма – в отсутствие изна-
чальной ошибки в значении доплеровского центроида 
изображения, синтезированные по субапертурам, полу-
чаются качественными, достаточно легко коррелируются 
друг с другом в случае радиометрически неоднородного 
сюжета и позволяют правильно получить околонулевые 
поправки. При большой изначальной ошибке из-за де-
градации качества синтезированных изображений точ-
ность получаемых поправок снижается, но имеется воз-
можность итерационного уточнения доплеровской не-
определенности, позволяющая после выполнения не-
скольких итераций прийти к достаточно точным значени-
ям. Недостатком алгоритма является достаточно грубая 
математическая модель пересчета геометрических рас-
согласований изображений в поправку к доплеровской 
неопределенности, из-за которой для получения точных 
значений требуется выполнить значительное количество 
итераций алгоритма, а в отдельных редких случаях оце-
нивание доплеровской неопределенности становится 
невозможным. 
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Цель работы – добиться высокой точности оценива-
ния обеих составляющих доплеровского центроида при 
умеренном объеме вычислений. Для этого предлагает-
ся выполнять оценку относительного значения допле-
ровского центроида одновременно с оценкой доплеров-
ской неопределенности, анализируя сигнал двух изоб-
ражений, синтезированных из радиоголограммы по суб-
апертурам, а также уточнить математическую модель 
пересчета геометрических рассогласований изображе-
ний, синтезированных по субапертурам, в поправку к 
доплеровской неопределенности с целью сокращения 
количества итераций оценивания и сокращения числа 
случаев, когда оценивание выполнить не удается. 

Оценивание относительного значения 
доплеровского центроида 

Для сокращения объема вычислений оценивание 
относительного значения доплеровского центроида 
можно выполнить по тем же данным, что и оценивание 
доплеровской неопределенности: по паре комплексных 
радиолокационных изображений, синтезированных из 
радиоголограммы по двум неперекрывающимся суб-
апертурам, каждая из которых составляет половину 
доплеровского спектра. При этом в процессе синтеза 
изображений не должна выполняться аподизация ази-
мутального спектра. За счет линейности дискретного 
преобразования Фурье сумма комплексных сигналов 
этих двух изображений эквивалентна сигналу комплекс-
ного изображения, синтезированного по полной аперту-
ре. Центральная частота сигнала вдоль столбца изоб-
ражения дает оценку относительного значения допле-
ровского центроида. 

Для нахождения азимутального спектра с высоким 
отношением сигнал-шум суммируются сигналы во всех 
столбцах фрагмента суммарного комплексного изобра-
жения, а затем применяется дискретное преобразова-
ние Фурье. 

Для нахождения центральной частоты в [8] предла-
гается свернуть амплитудный спектр с производной 
треугольной функции с шириной основания, соответ-
ствующей полосе доплеровских частот, и найти точку, в 
которой результат свертки обращается в ноль с отрица-
тельным наклоном. Вместо производной треугольной 
функции может также использоваться производная 
квадрата азимутальной диаграммы направленности 
антенны (ДНА) РСА. 

Однако для нахождения центральной частоты можно 
применить и более быстрый алгоритм, который обеспе-
чит эквивалентный результат в случае симметричного 
спектра. Для этого необходимо перейти в полярную 
систему координат и представить каждый отсчет ампли-
тудного спектра в виде вектора, длина которого опреде-
ляется интенсивностью отсчета, а направление – до-
плеровской частотой. Направление суммы таких векто-
ров даст центральную частоту. Наиболее удобно опи-
санные вычисления реализуются с помощью аппарата 
комплексных чисел: 
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где ( )A f  – амплитудный азимутальный спектр, j  – 

мнимая единица, имп имп[ / 2,   / 2)if f f   – частоты от-
счетов азимутального спектра. 

В алгоритмах оценки относительного значения до-
плеровского центроида, работающих по радиоголограм-
ме, одна оценка получается в результате анализа сум-
марного амплитудного азимутального спектра достаточ-
но большого квадратного фрагмента с размером сторо-
ны квадрата в несколько сотен пикселей. Однако прове-
денные экспериментальные исследования показали, что 
за счет компактности импульсных откликов на синтези-
рованном изображении, относительно точные оценки 
можно получать при размерах стороны фрагмента в не-
сколько десятков пикселей. Более того, выяснилось, что 
если большой фрагмент изображения разделить на не-
пересекающиеся малые фрагменты, в каждом из них 
выполнить анализ амплитудного азимутального спектра, 
а затем полученные оценки дц отнf  усреднить с весами, 
пропорциональными сумме отсчетов амплитудного спек-
тра малого фрагмента, то результат такого усреднения 
получается в среднем более точным, чем оценка дц отн ,f  

полученная по спектру всего большого фрагмента. Так 
при размере стороны большого фрагмента, составляю-
щем 1024 пикселя, среднеквадратичное отклонение 
оценок дц отнf  от полинома малой степени, аппроксими-
рующего их вариации по полю изображения от космиче-
ского аппарата «COSMO-SkyMed», составило 0,58 % от 
величины имп.f  Если же каждый большой фрагмент раз-
делить на малые фрагменты размером 32х32 пикселя, 
то среднеквадратичное отклонение снижается до 0,29 % 
от величины имп.f  

Таким образом, наиболее точная оценка относитель-
ного значения доплеровского центроида получается как 
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   

 
 

  
 



 
  (1) 

где ( )kA f  – амплитудный азимутальный спектр k -го 
малого фрагмента. 

Из (1) видно, что такое оценивание эквивалентно 
анализу суммы азимутальных амплитудных спектров, 
построенных по малым фрагментам, на которые разде-
лен большой фрагмент изображения. Суммирование 
амплитудных спектров можно считать неким аналогом 
некогерентного накопления, позволяющим снизить вли-
яние шумов. 

Точности оценок дц отнf  порядка 0,3 % от величины 

импf  достаточно как для качественного синтеза изобра-
жения из радиоголограммы, так и для геометрической 
калибровки космического аппарата. Однако такая точ-
ность достигается лишь при следующих условиях: 

1) наблюдаемые объекты в пределах анализируемо-
го фрагмента изображения должны быть неподвижны 
относительно земной поверхности; 

2) на фрагменте изображения должно быть высокое 
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отношение сигнал-шум; 
3) изображение должно быть качественно синтези-

ровано из радиоголограммы. 
Для выполнения первых двух условий необходимо 

исключать из оценки водную поверхность, радиотени, 
пески и прочие темные малоконтрастные объекты. По-
следнее условие выполняется по окончании итерацион-
ной схемы последовательного уточнения значений до-
плеровского центроида. 

Оценивание доплеровской неопределенности 

В основу оценивания доплеровской неопределенно-
сти положен амплитудный алгоритм, анализирующий 
смещение по наклонной дальности изображений, синте-
зированных из радиоголограммы по двум субапертурам 
[8, 13]. В классическом амплитудном алгоритме [8, 13] 
предполагается, что смещение по дальности лишь ли-
нейно зависит от ошибки знания доплеровской неопре-
деленности. Однако, как показывает практика, это спра-
ведливо лишь тогда, когда отсутствует ошибка знания 
относительного значения доплеровского центроида. 
Поэтому в случае существенных ошибок знания дц отнf  
получаются искаженные оценки доплеровской неопре-
деленности, что увеличивает число итераций последо-
вательного уточнения доплеровских параметров, а ино-
гда в принципе не позволяет оценить доплеровскую 
неопределенность. Рассмотрим более подробно, что 
происходит с изображениями, синтезированными по 
двум неперекрывающимся апертурам, в обоих случаях. 

Зависимость миграции по каналам дальности от до-
плеровской частоты f  может быть приближенно запи-
сана в виде: 

2 2

2 2
0 лэ

( ) ,
8
c R fR f

f V
    (2) 

где R  – дальность на траверзе, f  – рабочая частота 

РСА, c  – скорость света в вакууме, лэV  – линейная эк-
вивалентная скорость (параметр аппроксимации реаль-
ного движения РСА относительно наблюдаемых объек-
тов прямолинейным равномерным движением) [2, 8]. 

Аппроксимация (2) обладает высокой точностью при 
малых доплеровских сдвигах, но с увеличением допле-
ровской частоты точность (2) снижается. Тем не менее, 
даже при сдвигах частоты в несколько десятков кило-
герц относительная погрешность аппроксимации (2) 
составляет лишь единицы процентов, чего достаточно 
для оценки доплеровской неопределенности. 

Пусть ошибка знания дц отнf  нулевая, но имеется 

ошибка дцM  знания доплеровской неопределенности. 

В этом случае полная апертура корректно разбивается 
на две субапертуры относительно дц отн.f  При симмет-

ричной диаграмме направленности антенны средне-
взвешенные доплеровские частоты двух синтезирован-
ных изображений смещены на одинаковую величину 

импKf  относительно как имеющейся оценки абсолютно-

го значения доплеровского центроида дц ,f  так и истин-

ного значения дц.f  Таким образом, дальности одного и 

того же объекта на двух синтезированных изображениях 
будут равняться: 

1 дц имп дц имп

дц дц имп имп дц имп

( ) ( )

( ) ( ),

R R R f Kf R f Kf

R R f M f Kf R f Kf




      

       



   (3) 

2 дц имп дц имп

дц дц имп имп дц имп

( ) ( )

( ) ( ).

R R R f Kf R f Kf

R R f M f Kf R f Kf




      

       



   (4) 

Прибавление R  в (3) и (4) соответствует истинной 
миграции дальности, а вычитание R  – ее устранению в 
процессе синтеза изображения. 

Вычтя (3) из (4) и подставив (2), получим линейную 
зависимость, применяемую в классическом амплитуд-
ном алгоритме [8, 13]: 

2 2
имп

2 1 дц2 2
0 лэ2

Kf c RR R M
f V

   . 

Можно перейти от разницы наклонных дальностей к 
смещению двух изображений в пикселях :x  

2 1
дискр2
сR R x

f
   , 

где дискрf  – частота дискретизации сигнала в строке 
изображения. 

Тогда поправка к доплеровской неопределенности 
выражается как 

2 2
0 лэ

дц 2
имп дискр

,f V xM
Kf cR f

 
   

  
 

где [ ]x  – операция округления до ближайшего целого. 

В качестве коэффициента K  в [8] предлагается 
брать значение 0,25, не учитывая взвешивание сигна-
лов, смещенных по доплеровской частоте, квадратом 
ДНА. Однако, как показывает практика, из-за этого воз-
никает относительная погрешность оценки дцM  поряд-

ка 30 %, что при дц 2M   приводит к некорректной 

оценке и необходимости в еще как минимум одной ите-
рации по ее уточнению. 

В то же время, если азимутальная ДНА дц( )W f f  

известна, то коэффициент K  может быть найден как 
имп

имп

/ 2
2

0
/ 2

2
имп

0

( )

( )

f

f

fW f df
K

f W f df





. (5) 

Если азимутальная ДНА неизвестна, то в качестве 
аппроксимации ее квадрата может быть взята одна из 
стандартных оконных функций, например, обобщенное 
окно Хэмминга. 

Расчет K  с помощью (5) позволяет корректно оце-
нивать даже большие значения дц ,M  если получена 

точная оценка смещения изображений по дальности. 
Теперь рассмотрим случай, когда при синтезе изоб-

ражений имелась ненулевая ошибка дц отн дц отн(f f    

дц отн имп)  mod   ,f f   где дц отн имп имп[ / 2,   / 2),f f f    
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дц отнf  – значение, использованное при синтезе изобра-

жений. В этом случае разделение на субапертуры вы-
полняется некорректно. Частоты в пределах одной из 
субапертур интерпретируются при синтезе в пределах 
одной зоны неоднозначности, а в другой субапертуре 
часть частот попадает в ту же зону неоднозначности, а 
часть – переносится в соседнюю зону. Это приводит к 
раздвоению сюжета на одном из изображений. Верти-
кальное смещение между двумя копиями сюжета, по-
павшими в разные зоны неоднозначности, определяет-
ся временем, за которое доплеровский сдвиг частоты 
изменяется на величину имп :f  

2
имп

д

fy
K

  , 

где дK  – скорость изменения доплеровского сдвига 

частоты (доплеровская скорость). 
Оценка значения дц отнf  может быть получена в со-

ответствии с алгоритмом, описанным в предыдущей 
части настоящей работы. Зная дц отн ,f  можно оценить, 

какая из двух копий сюжета имеет большую интенсив-
ность. Если дц отн имп| | ,f Kf   то большей интенсивно-

стью обладает копия сюжета, соответствующая той же 
зоне неоднозначности, что и у изображения другой суб-
апертуры. В противном случае большей интенсивно-
стью обладает копия сюжета, соответствующая сосед-
ней зоне неоднозначности. 

В первом случае для нахождения x  требуется 
корреляционно-экстремальное совмещение фрагментов 
двух изображений, одинаково расположенных по верти-
кали. Во втором случае коррелируемый фрагмент одно-
го изображения должен быть смещен по вертикали на 

y  относительно фрагмента другого изображения. Ес-
ли же указанный выбор не сделать, то корреляционно-
экстремальное совмещение будет выполняться с копи-
ей сюжета, обладающей слабой интенсивностью и пло-
хо различимой на фоне другой копии. В пределе, когда 

дц отн имп| | 0,5 ,f f   интенсивность текущей копии сюже-
та падает практически до ноля, делая практически не-
возможным совмещение с ней, а следовательно, и оце-
нивание доплеровской неопределенности. В то же вре-
мя выбор другой копии для совмещения существенно 
его упрощает. 

В каждом из указанных двух случаев имеются свои 
нюансы в зависимости от знака дц отн .f  Таким образом, 

возможны четыре варианта, рассматриваемые ниже. 
Первый вариант: имп дц отн 0.Kf f     Двоение сю-

жета наблюдается на изображении, синтезированном из 
второй субапертуры. Большей интенсивностью облада-
ет копия сюжета, соответствующая той же зоне неодно-
значности, что и для первого изображения. Дальности 
одного и того же объекта на двух изображениях будут 
равняться: 

1 дц дц имп 1 имп

дц 1 имп

( )

( );

R R R f M f K f

R f K f
      

 



  

2 дц дц имп 2 имп

дц 2 имп

( )

( ),

R R R f M f K f

R f K f
      

 



  (6) 

где 1K  и 2K  – коэффициенты смещения средневзве-
шенного доплеровского сдвига на изображениях относи-
тельно дц .f  

Поправка к доплеровской неопределенности будет 
вычисляться как 

2 2
0 лэ

дц 2
1 2 имп дискр

2 .
( )

f V xM
K K f cR f

 
   

  
  (7) 

Коэффициент 1K  находится из расчета, что все ча-
стоты первой субапертуры попали в одну зону неодно-
значности, но при этом их верхняя граница сместилась 
относительно дцf  на минус дц отн :f  

дц отн

имп дц отн

дц отн

имп дц отн

2

/2 дц отн
1

имп2
имп

/2

( )

( )

f

f f
f

f f

fW f df
f

K
f

f W f df



 



 


  




.  (8) 

Коэффициент 2K  находится из расчета, что в пре-
делах второй субапертуры в ту же зону неоднозначности 
попала лишь полоса частот шириной имп дц отн/ 2 :f f  

имп

дц отн

имп

дц отн

/ 2
2

дц отн
2 /2

имп2
имп

( )

( )

f

f
f

f

fW f df
f

K
f

f W f df






 




. 

Поскольку значения коэффициентов 1K  и 2K  зави-

сят от дц отн ,f  то зависимость горизонтального сдвига 

x  между изображениями от ошибки знания доплеров-
ского центроида дц ,f  включающей дц отнf  и дц ,M  

перестает носить линейный характер, как это предпола-
галось в исходном алгоритме оценки доплеровской не-
определенности. 

Второй вариант: дц отн имп0 .f Kf    Двоение сюже-

та наблюдается на изображении, синтезированном из 
первой субапертуры. Большей интенсивностью облада-
ет копия сюжета, соответствующая той же зоне неодно-
значности, что и для второго изображения. Выражения 
для дальностей и поправки к доплеровской неопреде-
ленности будут в этом варианте эквивалентны (6) и (7), 
но используемые в них коэффициенты 1K  и 2K  будут 
находиться по-другому. 

Коэффициент 1K  находится из расчета, что в преде-
лах первой субапертуры в нужную зону неоднозначности 
попала лишь полоса частот шириной имп дц отн/ 2 :f f  

дц отн

имп

дц отн

имп
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/ 2 дц отн
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f
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Коэффициент 2K  находится из расчета, что все ча-
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стоты второй субапертуры попали в одну зону неодно-
значности, но при этом их нижняя граница сместилась 
относительно дцf  на минус дц отн :f  

имп дц отн

дц отн

имп дц отн

дц отн

/ 2
2

дц отн
2 / 2

имп2
имп

( )

( )

f f

f
f f

f

fW f df
f

K
f

f W f df










 




.  (9) 

Третий вариант: дц отн имп.f Kf    Двоение сюжета 
наблюдается на изображении, синтезированном из вто-
рой субапертуры. Большей интенсивностью обладает 
копия сюжета, соответствующая соседней зоне неодно-
значности по отношению к первому изображению. 
Дальности одного и того же объекта на двух изображе-
ниях будут равняться: 

1 дц дц имп 1 имп

дц 1 имп
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( );
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R f K f
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K f R f K f
     

    



  

Поправка к доплеровской неопределенности будет 
вычисляться как 

2 2
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дц 2
1 2 имп дискр

дц 2 имп

1 2 имп
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
 (10) 

Коэффициент 1K  находится аналогично первому 
варианту в соответствии с (8). 

Коэффициент 2K  находится из расчета, что в пре-
делах второй субапертуры в соседнюю зону неодно-
значности попала полоса частот шириной минус 

дц отн :f  
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Как видно из (10), в данном варианте для нахожде-
ния поправки дцM  требуется также ошибочное значе-

ние доплеровского центроида дц ,f  использованное при 
синтезе изображений. 

Четвертый вариант: дц отн имп.f Kf   Двоение сю-
жета наблюдается на изображении, синтезированном из 
первой субапертуры. Большей интенсивностью облада-
ет копия сюжета, соответствующая соседней зоне 
неоднозначности по отношению ко второму изображе-
нию. Дальности одного и того же объекта на двух изоб-
ражениях будут равняться: 

1 дц дц имп

1 имп дц 1 имп
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Поправка к доплеровской неопределенности будет 
вычисляться как 

2 2
0 лэ

дц 2
1 2 имп дискр

дц 1 имп

1 2 имп

2
( 1)

(0,5 )
.

( 1)

f V x
M

K K f cR f

f K f
K K f



 
  

 
 

 
  


 

Коэффициент 1K  находится из расчета, что в преде-
лах первой субапертуры в соседнюю зону неоднознач-
ности попала полоса частот шириной дц отн :f  

имп

имп дц отн

имп

имп дц отн

/ 2
2

/ 2 дц отн
1 / 2

имп2
имп

/2

( )

1
( )

f

f f
f

f f

fW f df
f

K
f

f W f df






   




. 

Коэффициент 2K  находится аналогично второму ва-
рианту в соответствии с (9). 

Оценивание абсолютного значения  
доплеровского центроида 

Предлагаемый алгоритм оценивания абсолютного 
значения доплеровского центроида по фрагменту двух 
изображений, синтезированных из радиоголограммы по 
непересекающимся субапертурам, включает следующие 
шаги. 

Шаг 1. Комплексные сигналы двух изображений в 
пределах анализируемого фрагмента суммируются, и в 
соответствии с (1) вычисляется оценка дц отн.f  

Шаг 2. Вычисляется 

дц отн дц отн дц отн имп( )  mod   f f f f    . 

Шаг 3. В соответствии со значением дц отнf  выби-
раются положения фрагментов изображений для  
корреляционно-экстремального совмещения. Если 

дц отн имп| | ,f Kf   положения фрагментов остаются неиз-

менными по отношению к шагу 1. Если дц отн имп ,f Kf    

фрагмент второго изображения смещается на y  вниз 
(в сторону увеличения азимутального времени). Если 

дц отн имп ,f Kf   фрагмент первого изображения смеща-

ется на y  вверх (в сторону уменьшения азимутального 
времени). 

Шаг 4. Путем корреляционно-экстремального сов-
мещения фрагментов изображений находится их гори-
зонтальное смещение .x  

Шаг 5. Если максимальное значение корреляционной 
функции оказывается меньше выбранного порога, счи-
тается, что анализируемый фрагмент не пригоден для 
оценки доплеровского центроида (содержит лишь мало-
контрастные объекты). В противном случае вычисления 
продолжаются. 
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Шаг 6. В зависимости от значения дц отнf  по одному 
из возможных четырех вариантов, рассмотренных в 
предыдущей части настоящей работы, горизонтальное 
смещение x  пересчитывается в поправку дц .M  

Шаг 7. Вычисляется оценка значения доплеровского 
центроида как дц отн дц дц имп( ) ,f M M f    где дцM  – 
значение доплеровской неопределенности, использо-
ванное при синтезе анализируемых изображений из 
радиоголограммы. 

Оценивание вариаций доплеровского центроида  
по полю изображения 

Для оценивания вариаций доплеровского центроида 
по полю изображения описанный выше алгоритм при-
меняется к различным фрагментам изображений, цен-
тры которых располагаются на некоторой квадратной 
сетке. Если размеры изображения не уменьшены по 
сравнению с радиоголограммой, граничные узлы сетки 
располагаются с отступом от краев изображения на по-
ловину горизонтального или вертикального размера 
несжатого импульсного отклика РСА во избежание вли-
яния краевых эффектов. 

Из-за возможных ошибок корреляционно-экстре-
мального совмещения и погрешностей оценивания тре-
буется дополнительная фильтрация полученных оце-
нок. Она выполняется в два этапа. 

На первом этапе на основе оценок доплеровского 
центроида, полученных по фрагментам, расположен-
ным в одном горизонтальном ряду, строится строгая 
геометрическая модель радиолокационной съемки в 
фиксированный момент времени. Для этого рассчиты-
ваются координаты точек на земной поверхности, име-
ющих наклонную дальность до фазового центра антен-
ны РСА, соответствующую центру фрагмента, и допле-
ровский сдвиг частоты, соответствующий полученной 
оценке. Поскольку все эти точки должны наблюдаться 
РСА в один момент времени, через них, а также поло-
жение РСА, соответствующее центральной строке 
фрагментов, по методу наименьших квадратов итера-
ционно проводится плоскость – вертикальная плоскость 
антенны РСА. На каждой итерации из построения плос-
кости исключаются точки, наиболее сильно отклоняю-
щиеся от нее на предыдущей итерации. Итерационный 
процесс заканчивается, либо когда становятся доста-
точно малы невязки, либо когда остается мало точек. 
Если удалось провести плоскость с малыми невязками 
через достаточное количество точек, то для всех фраг-
ментов горизонтального ряда корректируются оценки 
доплеровского центроида, чтобы они строго соответ-
ствовали проведенной плоскости. 

На втором этапе на основе оценок доплеровского 
центроида, полученных по всему полю изображения и 
скорректированных на предыдущем этапе, итерационно 
строится двумерный полином малой степени, аппрок-
симирующий пространственные вариации поправки к 
значению доплеровского центроида, использованному 
ранее для синтеза изображения. В качестве такого по-
линома, например, может быть взят многочлен вида 

0

( , ) ,i j
M ij

i j M
P x y p y x

  

   где 2.M   Построение также 

выполняется по методу наименьших квадратов с посте-
пенным отбрасыванием наиболее отклоняющихся от 
полинома поправок к доплеровскому центроиду. Если 
неотбракованных оценок остается мало или они начи-
нают группироваться лишь в малой части площади 
изображения, степень полинома M  понижается вплоть 
до ноля, чтобы избежать существенного возрастания 
ошибок оценивания к краям изображения. Итерационное 
построение полинома заканчивается, либо когда стано-
вятся достаточно малы невязки, либо когда остается 
мало оценок для его построения. 

После получения полинома поправки к доплеровско-
му центроиду может быть рассчитано максимальное 
значение поправки по полю изображения. Если оно до-
статочно мало, процесс оценивания завершается. Если 
же оно велико, требуются повторная обработка ра-
диоголограммы с уточненным значением доплеровского 
центроида и повторное оценивание доплеровского цент-
роида по двум изображениям субапертур, синтезиро-
ванным из радиоголограммы. 

Экспериментальные исследования 

Экспериментальные исследования выполнены с ис-
пользованием радиоголограммы, сформированной ра-
диолокационным космическим аппаратом «COSMO-
SkyMed» в режиме «HIMAGE» – режиме маршрутной 
радиолокационной съемки с пространственным разре-
шением около 3 м. Изображение, синтезированное из 
радиоголограммы по полной апертуре с корректным 
значением доплеровского центроида, приведено на 
рис. 1. Сюжет изображения (остров Гавайи) включает 
водную поверхность, скалистую и горную местность (в 
том числе кратеры вулкана Килауэа), лесной массив, 
поля и деревенскую застройку. 

Поскольку для космического аппарата «COSMO-
SkyMed» доступны высокоточные измерения угловой 
ориентации, ошибка знания доплеровского центроида в 
экспериментальных исследованиях вносилась искус-
ственно. Для различных значений внесенной ошибки 
выполнялось итерационное оценивание доплеровского 
центроида предложенным алгоритмом и менее точными 
известными амплитудными алгоритмами [7, 8, 13]. 
Ошибки вносились так, чтобы погрешность знания отно-
сительного значения доплеровского центроида состав-
ляла 0, 0,1, 0,2, минус 0,3 и минус 0,5 от частоты повто-
рения импульсов, а погрешность знания доплеровской 
неопределенности варьировалась от 0 до 11. При этом 
анализировались число итераций, необходимых для 
точной оценки, и возможность корреляционно-экстре-
мального совмещения фрагментов изображений, синте-
зированных по субапертурам. Критерием завершения 
итераций являлось непревышение максимальным зна-
чением поправки к доплеровскому центроиду порога в 
0,01 от частоты повторения импульсов. Результаты ана-
лиза приведены в табл. 1. 

Из табл. 1 видно, что предложенный алгоритм, как 
правило,  требует  на  1-2  итерации меньше для получе- 
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Рис. 1. Изображение, синтезированное из радиоголограммы 
(без радиометрической коррекции), и выделенная его часть 

ния точной оценки, чем известные амплитудные алго-
ритмы [7, 8, 13]. При этом в случаях, когда ошибка отно-
сительного значения доплеровского центроида состав-
ляет половину частоты повторения импульсов, извест-
ные алгоритмы [7, 8, 13] всё же позволяют в конце кон-
цов получить точный результат, несмотря на то, что в 
теории они должны перестать работать. Это объясняет-
ся наличием боковых лепестков в азимутальной диа-
грамме направленности антенны, за счет которых в 
зоне неоднозначности, не содержащей сигнал от основ-
ного лепестка из-за некорректного разделения на суб-
апертуры, всё же присутствует очень слабый сигнал. 
Этот сигнал различим лишь на фоне водной поверхно-
сти. Поэтому все фрагменты, по которым известному 
амплитудному алгоритму удается в этом случае оце-
нить доплеровскую неопределенность, локализованы в 
левом нижнем углу изображения. Оценки доплеровской 
неопределенности при этом получаются, как правило, 
ошибочные, из-за чего погрешность знания абсолютного 
значения доплеровского центроида после первой ите-
рации может даже возрасти. Однако за счет уточнения 
относительного значения после первой итерации про-
цесс оценивания в дальнейшем сходится к точному ре-
шению. Число необходимых итераций при этом зависит 
от того, насколько сильно увеличилась погрешность на 
первой итерации. В то же время предложенный алго-
ритм в этих случаях работает стабильно и уже с первой 

итерации приводит к существенному уменьшению по-
грешности знания доплеровского центроида. 

Чтобы продемонстрировать, что известные алгорит-
мы [7, 8, 13] в редких случаях при дц отн имп| | 0,5f f   мо-

гут в принципе не позволить оценить доплеровский цен-
троид, исключим из оценивания нижнюю часть изобра-
жения, содержащую водную поверхность. Результаты 
оценивания доплеровского центроида по части изобра-
жения, выделенной на рис. 1, приведены в табл. 2. При 
малых ошибках знания доплеровской неопределенности 
в рамках известного алгоритма [8, 13] не находится ни 
одного фрагмента, который не был бы отбракован из-за 
недостаточно высокого значения максимума корреляци-
онной функции, что делает оценку доплеровского цент-
роида известным алгоритмом невозможной. При увели-
чении ошибки знания доплеровской неопределенности 
изображения синтезируются существенно более размы-
тыми, из-за чего они становятся более похожими друг на 
друга. Поэтому для нескольких фрагментов максимум 
корреляционной функции начинает превышать порого-
вое значение. Положение максимума при этом не соот-
ветствует истинному смещению изображений, но итера-
ционный процесс оценивания всё же выходит из про-
блемной точки и в конце концов сходится к точному зна-
чению. В то же время предложенный алгоритм ведет 
себя стабильно, обеспечивая возможность оценивания 
доплеровского центроида для всех рассмотренных зна-
чений начальной ошибки за 3-4 итерации. 
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Таблица 1. Результаты оценивания доплеровского  
центроида по полному изображению 

дц дц

имп

f f
f


 

Число итера-
ций предло-
женного ал-

горитма 

Число  
итераций  
известных 

амплитудных 
алгоритмов 

0 1 1 
1 3 3 

2; 3 3 4 
4; 5; 6; 7; 8; 9; 10 3 5 

11 4 5 
0,1; 1,1 3 3 

2,1; 3,1; 4,1 3 4 
5,1; 6,1 3 5 

7,1; 8,1; 9,1; 10,1 4 5 
11,1 4 6 

0,2; 1,2 3 3 
2,2; 3,2 3 5 

4,2 4 4 
5,2 4 5 

6,2; 7,2 3 5 
8,2 4 5 
9,2 3 5 

10,2; 11,2 3 6 
–0,3; 0,7 3 4 

1,7 3 5 
2,7; 3,7; 4,7; 5,7 3 4 

6,7 4 4 
7,7 4 6 
8,7 4 5 
9,7 4 3 

10,7 4 5 
–0,5; 0,5 4 4 

1,5 3 6 
2,5; 3,5; 4,5 4 6 

5,5 4 7 
6,5 4 6 
7,5 4 5 

8,5; 9,5; 10,5 4 6 
Среднее число ите-
раций 3,38 4,72 

Среднеквадратич-
ное отклонение  
числа итераций 

0,58 1,05 

Заключение 

Более высокая точность предложенного алгоритма 
позволяет сократить число итераций синтеза изображе-
ния и оценивания его параметров для получения точ-
ных оценок доплеровского центроида. Среднее значе-
ние числа необходимых итераций оказывается на 1,34 
меньше, чем для известных амплитудных алгоритмов 
[7, 8, 13], а его случайные вариации уменьшаются в 1,8 
раза. Кроме того, в отличие от известных амплитудных 
алгоритмов, предложенный алгоритм стабильно позво-
ляет выполнить оценивание доплеровского центроида в 
случае, когда ошибка знания его относительного значе-

ния близка к половине частоты повторения зондирую-
щих импульсов. 

Таблица 2. Результаты оценивания доплеровского  
центроида по части изображения 

дц дц

имп

f f
f


 
Число итераций 
предложенного 

алгоритма 

Число итераций 
известных ампли-

тудных алгоритмов 

–0,5; 0,5; 2,5 3 

не удалось совме-
стить фрагменты 

изображений  
при оценивании  
доплеровской  

неопределенности  
на первой итерации 

1,5 3 8 
3,5 3 7 
4,5 3 4 

5,5; 6,5 4 6 
7,5 4 5 
8,5 4 8 

9,5; 10,5 4 6 
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Анализируются интерферометрическая и стереофотограммет-
рическая цифровые модели местности GLO-30 и AW3D30. Отмеча-
ется, что GLO-30 имеет в среднем более высокую вертикальную 
точность, однако в городских районах высоты искусственных объ-
ектов на ней существенно занижены. Предлагается алгоритм ком-
плексирования цифровых моделей местности, позволяющий повы-
сить точность интерферометрической модели местности в город-
ских районах за счет стереофотограмметрических данных. Для вы-
явления городских районов привлекаются электронные карты 
OpenStreetMap. Приводятся результаты предложенного алгоритма. 
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INTERFEROMETRIC DSM GLO-30  
AND STEREOPHOTOGRAMMETRIC DSM AW3D30 FUSION 

Ushenkin V.A., Laryukov S.A. 
The work analyzes interferometric and stereophotogrammetric digital surface models GLO-30 and AW3D30. It is noted that GLO-30 
has on average higher vertical accuracy, but in urban areas the heights of artificial objects are significantly underestimated. The al-
gorithm of these digital surface models’ fusion is proposed. It allows increasing the accuracy of the interferometric digital surface 
model in urban areas using stereophotogrammetric data. OpenStreetMap digital maps are used to identify urban areas. The results 
of the proposed algorithm are presented. 
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рия, стереофотограмметрия, электронные карты. 

Введение 

Высокоточное знание высот земной поверх-
ности (рельефа) и расположенных на ней объек-
тов необходимо во многих областях человече-
ской деятельности, в том числе в навигации и 
при обработке аэрокосмических изображений. 

В настоящее время в открытом доступе стали 
доступны две высокоточные глобальные цифровые мо-
дели местности (ЦММ), описывающие высоты земной 
поверхности или расположенных на ней объектов с ша-
гом в одну угловую секунду широты или долготы: 
AW3D30 и GLO-30. 

ЦММ AW3D30 сформирована стереофотограмметри-
ческим методом [1] по данным датчика PRISM японского 
космического аппарата ALOS (другое название аппара- 
та – Daichi). Среднеквадратичная ошибка абсолютных 
высот на AW3D30 заявлена равной 5 м [2]. 

ЦММ GLO-30 сформирована интерферометрическим 
методом [3–6] по данным немецких космических аппара-
тов TerraSAR-X и TanDEM-X. Ошибка LE90 абсолютных 
высот на GLO-30 заявлена равной 4 м [7]. Если считать 
закон распределения ошибок нормальным, то это соот-
ветствует среднеквадратичной ошибке порядка 2,5 м, т.е. 
примерно в 2 раза меньшей, чем у AW3D30. 

Однако особенности радиолокационной интерферо-
метрии (боковой обзор, более высокая проникающая спо-
собность радиоволн по сравнению с видимым излучени-
ем, проблема развертывания фазы на радиолокационных 
интерферограммах) привели к тому, что, несмотря на 
высокую среднюю вертикальную точность, в городских 
районах высоты большинства искусственных объектов на 
GLO-30 существенно занижены. Так же, как и более ста-
рая глобальная интерферометрическая ЦММ SRTM, 

GLO-30 за счет описанных выше особенностей прибли-
жается к цифровой модели рельефа (ЦМР), которая в 
идеале должна описывать лишь высоты земной поверх-
ности (рельефа), с которой удалены все расположенные 
на ней объекты. 

ЦМР предпочтительны при ортотрансформировании 
оптических изображений в случаях, когда пространствен-
ное разрешение изображения существенно выше, чем у 
модели высот. При этом здания на полученных ортопла-
нах остаются наклоненными, но координаты углов осно-
вания зданий измеряются правильно, а крыша имеет не-
искаженную форму. По смещению крыши относительно 
основания можно дополнительно оценить высоту здания. 
Если же вместо ЦМР будет использоваться ЦММ, то из-
за недостаточной детальности границы высотных зданий 
на ней будут смещены относительно истинного положе-
ния, из-за чего на полученных ортопланах крыши зданий 
могут быть сильно деформированы: отдельные фрагмен-
ты крыши будут перенесены к основанию, а оставшиеся 
фрагменты останутся смещенными относительно осно-
вания. 

В то же время в других областях, например в навига-
ции, предпочтительны ЦММ. Также их следует применять 
и при ортотрансформировании аэрокосмических изобра-
жений среднего разрешения, когда детальность ЦММ 
оказывается сопоставима с детальностью изображения. 
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Поскольку имеющаяся в настоящее время глобальная 
ЦММ AW3D30 менее точна, чем приближенная к ЦМР 
GLO-30, актуальна задача их комплексирования [8]  
с получением ЦММ, на которой высоты рельефа взяты  
с более точной GLO-30, а высоты наземных объектов –  
с AW3D30. 

Получение опорной информации  
о расположении объектов на земной поверхности 

Отличить высотные объекты, расположенные на зем-
ной поверхности, от перепадов высот рельефа – крайне 
сложная задача. В то же время с развитием картографи-
ческих сервисов в настоящее время доступна априорная 
информация о расположении таких объектов. Открытым 
глобальным картографическим источником данных явля-
ются электронные карты OpenStreetMap [9]. В качестве 
высотных объектов, расположенных на земной поверхно-
сти, могут быть приняты следующие объекты электрон-
ных карт: 

1) здания; 
2) искусственные сооружения: 

а) резервуары для хранения; 
б) накопительные баки; 
в) мосты; 
г) эстакады; 
д) развязки дорог; 
е) башни; 
ж) вышки; 
з) мачты; 
и) столбы; 
к) дымовые трубы; 
л) маяки; 
м) буровые платформы; 
н) насыпи и т.п. 

Каждый из перечисленных объектов описывается в 
векторном виде как многоугольник, линия или точка. Для 
использования картографических данных при комплекси-
ровании ЦММ необходимо преобразовать их к растрово-
му виду – бинарной маске в растровой сетке широт и дол-
гот, нулевое значение которой соответствует отсутствию 
наземных объектов в пределах пикселя маски, а единич-
ное значение – наличию хотя бы одного такого объекта. 

Сформированная бинарная маска требует дополни-
тельного уточнения. Во-первых, границы объектов на 
векторных картах и AW3D30 могут совпадать неточно. 
Во-вторых, на электронные карты могут быть нанесены 
не все объекты. В-третьих, из-за недостаточно высокой 
детальности AW3D30 близко расположенные высотные 
объекты могут слиться на ней в один объект. 

Предлагается следующий алгоритм уточнения бинар-
ной маски наземных высотных объектов. 

В окрестности каждого нулевого пикселя маски вы-
полняется классификация пикселей на пиксели рельефа 
и пиксели наземных объектов. К рельефу относятся пик-
сели с нулевым значением маски, все смежные пиксели 
которых также нулевые. Остальные пиксели признаются 
пикселями наземных объектов. 

Если во вторую группу попал хотя бы один пиксель 
окрестности, анализируется количество пикселей в пер-
вой группе. Если оно меньше заданного порога, нулевой 

пиксель маски заменяется единичным. В противном слу-
чае в пределах каждой группы пикселей рассчитываются: 

1) модуль разности средней высоты на AW3D30 в 
пределах группы пикселей и высоты на GLO-30, соответ-
ствующей анализируемому нулевому пикселю маски; 

2) модуль средней разности высот на AW3D30 и  
GLO-30 в пределах группы пикселей. 

Также оценивается модуль разности высот на 
AW3D30 и GLO-30, соответствующих анализируемому 
нулевому пикселю маски. 

Нулевой пиксель маски заменяется единичным, если: 
1) модуль разности средней высоты на AW3D30 в 

пределах пикселей рельефа и высоты на GLO-30, соот-
ветствующей анализируемому нулевому пикселю маски, 
превышает выбранный порог; 

2) модуль разности средней высоты на AW3D30 в 
пределах пикселей наземных объектов и высоты на  
GLO-30, соответствующей анализируемому нулевому 
пикселю маски, меньше модуля разности средней высоты 
на AW3D30 в пределах пикселей рельефа и высоты на 
GLO-30, соответствующей анализируемому нулевому 
пикселю маски; 

3) модуль разности высот на AW3D30 и GLO-30, соот-
ветствующих анализируемому нулевому пикселю маски, 
превышает модуль средней разности высот на AW3D30 и 
GLO-30 в пределах пикселей рельефа сильнее, чем на 
выбранный порог; 

4) модуль средней разности высот на AW3D30 и  
GLO-30 в пределах пикселей наземных объектов превы-
шает модуль средней разности высот на AW3D30 и GLO-
30 в пределах пикселей рельефа сильнее, чем на вы-
бранный порог. 

Указанный процесс коррекции маски выполняется в 
несколько итераций. Число итераций, размеры окрестно-
сти и значения порогов подбираются эмпирическим путем 
так, чтобы единичные пиксели скорректированной маски 
покрыли большую часть высотных объектов, представ-
ленных в городских районах на AW3D30. 

Геометрическое совмещение ЦММ AW3D30 и GLO-30 

Комплексируемые ЦММ AW3D30 и GLO-30 представ-
лены на различных растровых сетках. В пределах от  
50° ю.ш. до 50° с.ш. шаги пикселей на AW3D30 и GLO-30 
одинаковы, но данные GLO-30 смещены на половину 
пикселя по диагонали относительно AW3D30. В припо-
лярных и полярных широтах данные GLO-30 дополни-
тельно прорежены по долготе по сравнению с AW3D30. 
Таким образом, перед выполнением комплексирования 
требуется геометрическое совмещение ЦММ AW3D30 и 
GLO-30. 

При совмещении необходимо определить, какая из 
ЦММ останется в исходной сетке, а какая будет транс-
формироваться. Поскольку трансформация требует ин-
терполяции высот, этот выбор обусловлен минимизацией 
искажений, возникающих при интерполяции. От ЦММ 
GLO-30 при комплексировании берутся данные по рель-
ефу, который в преобладающем большинстве случаев 
обладает гладким характером. От ЦММ AW3D30 при 
комплексировании берутся данные по высотным назем-
ным объектам, для которых характерны резкие границы, 



 

 
 
42 

в пределах которых из-за нарушения теоремы Котельни-
кова при интерполяции будут наблюдаться артефакты. 
Следовательно, ЦММ AW3D30 остается в исходной раст-
ровой сетке, а ЦММ GLO-30 трансформируется путем 
уменьшения шага дискретизации в приполярных и поляр-
ных областях, а также плоскопараллельного сдвига на 
половину пикселя по диагонали. 

В качестве интерполятора выбран двумерный фильтр 
Ланцоша размерами 4x4 пикселя: 
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где ( )mnh  – матрица высот, ( , )h y x  – интерполирован-

ное значение высоты, x    – функция «пол». 

Выбор обусловлен компромиссом между точностью 
восстановления высоты на гладких участках рельефа и 
амплитудой выбросов в редких случаях, когда для высот 
рельефа нарушается теорема Котельникова. 

Комплексирование ЦММ AW3D30 и GLO-30 

При комплексировании ЦММ AW3D30 и GLO-30 
участки на GLO-30, соответствующие единичным пиксе-
лям mn  сформированной бинарной маски наземных 
высотных объектов, заполняются данными AW3D30 с 
обеспечением бесшовной стыковки на границах участ-
ков [10]. 

Стыковка обеспечивается с использованием коррек-
тирующей высотной поверхности ,коррh  применяемой к 

значениям высоты на AW3D30. Корректирующая по-
верхность позволяет скомпенсировать систематические 
ошибки высоты, вызванные меньшей точностью 
AW3D30 по сравнению с GLO-30. 

Для нулевых пикселей сформированной бинарной 

маски наземных высотных объектов корректирующая 
поверхность определяется как 3 ,коррmn GLOmn AW Dmnh h h   

где ( )GLOmnh  и 3( )AW Dmnh  – матричное представление 
ЦММ GLO-30 и AW3D30, приведенных к единой растро-
вой сетке. 

В единичных пикселях сформированной бинарной 
маски наземных высотных объектов значения корректи-
рующей поверхности определяются с помощью интерпо-
ляции по методу обратных взвешенных расстояний: 
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где 2 20 ;k l D    ,k l  – целые; D  и p  – радиус и 
показатель фильтра обратных расстояний,   – малая 
величина, используемая для регуляризации. 

После получения значений коррmnh  во всех пикселях 

участки на GLO-30, соответствующие единичным значе-
ниям ,mn  заполняются значениями .GLOmn коррmnh h  

Экспериментальные исследования 
Комплексирование ЦММ AW3D30 и GLO-30 выполне-

но на всей сетке широт и долгот земного эллипсоида. 
Примеры исходных данных и результата комплексирова-
ния для территории г. Москва приведены на рис. 1. Визу-
альный анализ результатов показывает, что все назем-
ные высотные объекты успешно перенесены с AW3D30 и 
GLO-30, при этом за пределами городов на GLO-30 со-
хранены более точные данные о высоте рельефа. 
Заключение 

Предложенный алгоритм комплексирования ЦММ 
AW3D30 и GLO-30 с привлечением электронных карт 
OpenStreetMap позволяет получить ЦММ, более точную 
для городских районов, чем GLO-30, и более точную за 
пределами городов, чем AW3D30. 

    
 а) исходная ЦММ AW3D30 б) ЦММ GLO-30, совмещенная с AW3D30 
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 в) бинарная маска, сформированная по данным OpenStreetMap г) разность совмещенных AW3D30 и GLO-30 

       
 д) разность результата комплексирования и GLO-30 е) результат комплексирования 

Рис. 1 Комплексирование ЦММ AW3D30 и GLO-30 для территории г. Москва 
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Исследована возможность использования методов класси- 
ческого и глубокого машинного обучения для неэталонной оценки 
качества изображений, полученных при колоноскопическом обсле-
довании. Создан тестовый набор колоноскопических изображений, 
проведена его экспертная оценка, оценена корреляция ряда 
популярных неэталонных алгоритмов (BRISQUE, NIQE, TOPIQ, 
PaQ-2-PiQ) с экспертными значениями, предложено 2 собствен-
ных алгоритма, использующих методы машинного обучения. Рас-
смотрены типовые артефакты и искажения на изображениях 
рассматриваемого типа: размытие, блики, эффекты черес-
строчности. Результаты показывают, что оба предложенных 
алгоритма, базирующихся на методах машинного обучения, в 
целом справляются с оцениванием качества изображений, при 
этом несколько занижая среднюю экспертную оценку. Полученные 
выводы и рекомендации могут использоваться при разработке 
системы анализа видеопотока в эндоскопической системе, рабо-
тающей в режиме реального времени, при проведении колоноско-
пических исследований. 
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NON-STANDARD ASSESSMENT OF THE IMAGE QUALITY 
OF COLONOSCOPIC EXAMINATIONS 

Khryashchev V.V., Sedov A.G., Priorov A.L. 
The article investigates the possibility of using classical and deep machine learning methods for non-reference assessment of the quali-
ty of images obtained during colonoscopic examination. A test set of colonoscopic images was created, its expert assessment was car-
ried out, the correlation of a number of popular non-reference algorithms (BRISQUE, NIQE, TOPIQ, PaQ-2-PiQ) with expert values was 
estimated, and two proprietary algorithms using machine learning methods were proposed. Typical artifacts and distortions in images of 
this type are considered: blur, glare, interlacing effects. The results show that both proposed algorithms based on machine learning 
methods generally cope with image quality assessment, while slightly underestimating the average expert assessment. The findings 
and recommendations can be used in developing a video stream analysis system in an endoscopic system operating in real time during 
colonoscopic examinations. 
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ний, неэталонные алгоритмы, эндоскопия, колоно-
скопические изображения, машинное обучение, 
нейронные сети.  

Введение  

В современных системах медицинской диа-
гностики все чаще используются различные ви-
зуальные технологии, основанные на методах и 
алгоритмах цифровой обработки статических и 
динамических изображений (видеопоследова-
тельностей). Традиционно для этих целей ис-
пользуются также методы как классического, так 
и глубокого машинного обучения, повышающие 
уровень интеллектуализации таких систем. В 
свою очередь, это дает возможность частичной 
автоматизации как диагностики, так и контроля 
качества соответствующих медицинских проце-
дур [1-4], повышающих общий уровень медицин-
ского обслуживания населения. 

Примером успешного применения указанных визу-
альных технологий и систем искусственного интеллекта 
является эндоскопия желудочно-кишечного тракта, в том 
числе колоноскопические исследования кишечника [1, 2]. 

Технические особенности современных эндоскопи-
ческих систем таковы, что они имеют некоторые недо-
статки, в определенной степени осложняющие анализ 
полученных с их помощью колоноскопических изобра-
жений, причем это характерно как для работы врачей-
экспертов, так и при использовании алгоритмов обра-
ботки информации программно-аппаратными комплек-
сами [1, 5-7]. К ним можно отнести: 

– наличие размытия на полученных изображениях, 
вызванного отсутствием автофокусировки на современ-
ных эндоскопах, что обусловлено их конструктивными 
особенностями; 

– дополнительное размытие изображений, возника-
ющее из-за турбулентного движения эндоскопа в поло-
сти исследуемого органа; 

– блики на слизистой оболочке кишечника, обуслов-
ленные отражением света источника, находящегося на 
конце вводимого в него световода; 

– яркость, контрастность и некоторые другие харак-
теристики получаемого эндоскопического изображения 
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могут меняться в значительных пределах, поскольку 
различна геометрия анализируемой области; 

– видеопроцессор эндоскопической системы выдает 
видеопоследовательности с эффектом чересстрочной 
развертки, что приводит к необходимости дополнитель-
ной обработки. 

Указанные недостатки приводят к необходимости 
дополнительной процедуры контроля качества сохра-
няемых изображений и видеопоследовательностей, 
которые в дальнейшем используются как входные дан-
ные для систем машинного обучения. В большинстве 
практических случаев после проведения обследования 
врач-эндоскопист должен сохранить полученный набор 
изображений согласно соответствующему регламенту в 
медико-информационную систему (МИС). C большой 
вероятностью произвольно взятый из видеопотока ко-
лоноскопического исследования кадр не будет доста-
точно информативным. Следовательно, на данном эта-
пе развития систем анализа изображений в эндоскопии 
актуален вопрос о контроле качества сохраненных кад-
ров в МИС с использованием алгоритмических критери-
ев оценивания качества изображений.  

Оценка качества – важнейшая часть процесса ис-
следования при разработке систем обработки и анализа 
изображений [8, 9]. Как известно, проводить ее можно 
как путем усреднения экспертных оценок, так и путем 
разработки соответствующих алгоритмов. Кажется 
естественным использовать для указанных целей эта-
лонные алгоритмы оценки качества изображений, даю-
щие наилучшие результаты. Однако во многих реаль-
ных задачах эталонное изображение, необходимое для 
этих алгоритмов, отсутствует, поэтому приходится ис-
пользовать неэталонные алгоритмы. Они подразделя-
ются на два больших класса по признаку использования 
либо неиспользования априорной информации о виде 
искажения анализируемого изображения (рис. 1).  

К неэталонным алгоритмам оценки качества изоб-
ражений, учитывающим априорную информацию, отно-
сятся те, в которых определенным образом измеряется 
уровень соответствующего типа искажения. Примерами 
могут служить различные виды шумов, размытие, арте-
факты при сжатии по соответствующим стандартам 
(чаще всего – это стандарты сжатия статических изоб-
ражений JPEG и JPEG2000).   

На современном этапе развития визуальных техно-
логий значительное внимание разработчиков уделяется 

созданию и исследованию таких неэталонных алгорит-
мов оценки качества, работа которых уже не ограничи-
вается только одним типом искажения изображений. К 
таким методам и алгоритмам, например, относятся мет-
рики, базирующиеся на статистике естественных изоб-
ражений (NSS – Natural Scene Statistics). Важно отме-
тить, что указанная статистика может рассчитываться и 
в пространственной области [10, 11], и в области 
трансформант вейвлет преобразования, а также дис-
кретного косинусного преобразования [12, 13], которые 
традиционно широко используются в цифровой обра-
ботке изображений. Кроме того, для неэталонной оцен-
ки качества изображений могут применяться различные 
методы как классического, так и глубокого машинного 
обучения [14, 15]. 

Обучение алгоритмов традиционно осуществляется  
на предварительно собранной базе изображений с раз- 
личными типами искажений и усредненными оценками  
экспертов MOS (Mean Opinion Score). В практических  
приложениях часто используют такие общедоступные  
наборы изображений, как LIVE [16], TID2013 [17] и др.  
Указанный этап обучения алгоритмов нужен для того,  
чтобы определить функцию, связывающую значения  
соответствующих признаков и оценку качества изобра-
жений на выходе системы обработки. Фактически поиск 
такой функциональной зависимости часто сводится к 
решению задачи регрессии, которая обычно выполня-
ется при помощи различных методов машинного обуче-
ния, включая и глубокое обучение. При использовании 
для решения указанной задачи алгоритмов неэталонной 
оценки качества часто применяют рандомизированные 
деревья, машину опорных векторов, а также различные 
нейросетевые архитектуры. 

Использование методов глубокого машинного обу-
чения в таких задачах также возможно, но требует сбо-
ра и оценивания большой базы изображений, реле-
вантных решаемой практической задаче. 

Рассмотрим особенности построения неэталонных 
алгоритмов оценивания качества изображений на набо-
ре изображений с колоноскопического исследования. 

Набор колоноскопических изображений 

Собранная совместно с врачами Ярославской об-
ластной клинической онкологической больницы база 
состоит из 1000 статических изображений, взятых из  
10 колоноскопических  видеопоследовательностей  раз- 

 
Рис. 1. Классификация неэталонных алгоритмов оценки качества изображений 
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 а) MOS = 1,6  б) MOS = 2,8  в) MOS = 4 

Рис. 2. Колоноскопические изображения с усредненными экспертными оценками 

 
Рис. 3. Структурная схема вычисления метрики BRISQUE 

 
Рис. 4. Структурная схема вычисления признаков NSS 

личных исследований. Четыре видеопоследовательно-
сти получены на оборудовании с чересстрочным фор-
матом изображения, на остальных видеоданных эф-
фект чересстрочности (ЭЧ) отсутствует. Статические 
изображения нарезались из видеоданных путем сохра-
нения из них каждого десятого кадра. Затем вручную 
отбрасывались последовательные кадры, не имеющие 
заметных видимых различий. Из оставшихся кадров 
случайным образом выбрано 1000 изображений. Изоб-
ражения с ЭЧ в итоге составили около половины от всех 
собранных в наборе [18]. 

Далее происходила процедура субъективного (экс-
пертного) оценивания качества собранного набора 
изображений. Группа из пяти экспертов поставила каж-
дому изображению оценки от «1» до «5». Оценка «1» 
ставилась, если изображение являлось полностью не 
информативным. Оценка «5» ставилась для идеального 
четкого изображения. Для изображений с оценкой «3» 
допускалось наличие зашумленных или размытых об-
ластей, при условии наличия полезных областей. Про-
межуточные оценки «2» и «4» ставились, если изобра-
жения логически сложно было соотнести с установлен-
ными критериями для оценок «1», «3» или «5». 

На рис. 2 показаны примеры колоноскопических 
изображений с усредненными экспертными оценками 
качества MOS. 

На этом этапе дополнительно рассчитывался также 
ряд статистических показателей. Установлено, что ко-

эффициент линейной корреляции оценок экспертов 
друг с другом составил от 0,6 до 0,68. Экспертам до-
полнительно предлагалось повторно оценить 50 изоб-
ражений. Корреляция собственных оценок в двух слу-
чаях составила от 0,75 до 0,84. Рассчитывалось также 
среднее арифметическое пяти экспертных оценок MOS. 
Среднее квадратичное отклонение полученной оценки 
составило 0,72. 

Анализ известных неэталонных алгоритмов  

Алгоритм расчета метрики BRISQUE, приведенный 
на рис. 3, сопоставляет каждому изображению вектор, 
состоящий из 36 признаков [11]. Из них 18 признаков 
вычисляется для исходного изображения, а другие 18 – 
для изображения, уменьшенного в 2 раза. Итоговое 
значение метрики вычисляется с использованием пред-
варительно обученного на базе экспертных оценок ал-
горитма машинного обучения. Для расчета признаков 
алгоритм BRISQUE вычисляет распределение коэффи-
циентов, отвечающих за распределение статистики в 
естественных изображениях – NSS (рис. 4) оцениваемого 
изображения. Признаки представляют собой коэффици-
енты симметричного (GGD) и ассиметричного (AGGD) 
нормальных распределений, наилучшим образом ап-
проксимирующих наблюдаемую статистику данных. 

Алгоритм NIQE [19] оценивает различие между рас-
пределением коэффициентов NSS для изображения и 
приближением того же самого  распределения с исполь- 
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Таблица 1. Значения коэффициента линейной корреляции 

Алгоритм Все изображения Изображения с ЭЧ Изображения без ЭЧ 
BRISQUE 0,46 0,71 0,08 

NIQE 0,5 0,67 0,37 
TOPIQ 0,29 0,18 0,36 

PaQ-2-PiQ 0,18 0,38 0,36 
Таблица 2. Значения среднеквадратичной ошибки  

Алгоритм Все изображения Изображения с ЭЧ Изображения без ЭЧ 
LRG MSE = 0,20 MSE = 0,10 MSE = 0,20 
PR MSE = 0,14 MSE = 0,11 MSE = 0,18 

 
зованием многомерного нормального распределения. 
Метрика NIQE для своего расчета не использует мето-
ды машинного обучения на экспертных оценках.  

Известно, что традиционные метрики оценки каче-
ства плохо решают проблему контекста: они не способ-
ны анализировать содержимое изображения, хотя оно 
влияет на субъективную оценку качества. Для решения 
этой проблемы исследователи прибегают к созданию 
алгоритмов, использующих сверточные нейронные сети 
и другие алгоритмы глубокого машинного обучения.  
К ним, например, относятся алгоритмы TOPIQ [20] и 
PaQ-2-PiQ [21]. Область их применения на практике 
ограничена наличием большого (желательно от 10000 
штук) обучающего набора изображений с экспертными 
оценками MOS. 

В ходе проведенного эксперимента рассчитан ко-
эффициент линейной корреляции между экспертной 
оценкой MOS и описанными выше известными алгорит-
мическими метриками неэталонной оценки качества: 
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Здесь ,i ix y  – экспертные и алгоритмические оценки 

i-го изображения, а ,x  y  – средние значения оценок на 
всем множестве изображений. 

Исследование проводилось: на всем наборе изоб-
ражений, только на изображениях с ЭЧ, только на изоб-
ражениях без ЭЧ. Результаты приведены в табл. 1. Вы-
числение значений метрик произведено с использова-
нием библиотеки IQA-PyTorch [22]. 

Алгоритмы BRISQUE, NIQE, TOPIQ оценивают сте-
пень зашумленности, поэтому обратно коррелируют с 
качеством изображения, поэтому в табл. 1 приведены 
абсолютные значения коэффициента корреляции. 
Установлено, что наилучшие результаты на всем набо-
ре демонстрируют метрики BRISQUE и NIQE, использу-
ющие признаки NSS и два уровня пространственной 
пирамиды (используется как исходное, так и уменьшен-
ное в два раза изображение, см. рис. 3, [11]). 

Одним из этапов вычисления признаков NSS явля-
ется нахождение распределений разностей значений 
между соседними пикселями. В частности, вычисляются 
разности с соседями по горизонтали и вертикали. У 
изображений с ЭЧ эти распределения будут отличаться, 
но только на первом уровне пространственной пирами-
ды. На ее втором уровне изображение уменьшается в 

два раза, и характерные ЭЧ пропадают. Эти особенно-
сти могут объяснять высокую корреляцию оценок алго-
ритмов BRISQUE и NIQE для изображений с ЭЧ. 

Разработка алгоритмов на основе признаков NSS 

Необходимо было обучить алгоритм машинного обу-
чения на наборе колоноскопических изображений, не 
изменяя способов вычисления коэффициентов NSS. 
При этом рассматривались методы линейной регрессии 
(LRG) и использование персептрона (PR) с одним скры-
тым слоем (100 нейронов в скрытом слое, функция ак-
тивации ReLU). В качестве функции потерь использова-
на среднеквадратичная ошибка (MSE):  

 2

1

1  
n

i i
i

MSE z z
n 

  , 

где iz  и z  – исходная и предсказанные оценки для i-го 
изображения. Набор изображений делился на обучаю-
щее и тестовое множество в соотношении 7:3. В табл. 2 
приведены результаты, полученные на тестовом мно-
жестве.  

Разработка алгоритма  
на основе сверточной нейронной сети 

На субъективную оценку качества изображения сре-
ди прочих факторов отрицательно влияют низкая осве-
щенность и наличие бликов отраженного света. Кроме 
того, движение эндоскопа в органах желудочно-
кишечного тракта, в том числе и кишечника, приводит к 
появлению артефактов размытия на изображениях. 
Напротив, если на изображении отчетливо видны стен-
ки внутренних органов – это положительно влияет на 
субъективную оценку. Выявление перечисленных выше 
признаков должно быть под силу алгоритму, базирую-
щемуся на небольшой СНС. Одна из первых попыток 
использования СНС для оценки качества изображений 
приведена в работе [14]. 

В используемой архитектуре (рис. 5) несколько свер-
точных слоев возвращают на выходе тензор размерно-
сти 17x17x50. Затем, как и в оригинальной работе, в 
каждом из 50 каналов извлекаются максимальное и ми-
нимальное значение. Кроме того, добавлено вычисле-
ние среднего значения в каждом канале. После конка-
тенации получается вектор из 150 элементов. С исполь-
зованием нескольких полносвязных слоев вычисляется 
оценка качества. Далее в работе будем называть эту 
модель MMA-CNN (min+max+average – convolutional 
neural network). 
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Рис. 5. Алгоритм оценки качества изображения  

на основе сверточной нейронной сети 

В результате обучения среднеквадратичная ошибка 
на тестовом множестве составила 0,2, как и при исполь-
зовании линейной регрессии по признакам NSS.  

Также визуальный анализ значений в последнем ка-
нале сверточного слоя позволяет сделать следующие 
наблюдения: 

Слишком темные и слишком яркие области отчетли-
во выделились в отдельных каналах. Один канал имеет 
отклики только для изображений с ЭЧ. 

Области «высокого качества» не имеют отдельных 
каналов. 

Примерно на четверти всех изображений виден зонд 
эндоскопа. Зачастую он неподвижен на подверженном 
размытию движения изображении или наоборот, размыт 
или засвечен на переднем плане в целом качественного 
изображения. Изображение зонда не представляет ни-
какой ценности и не должно влиять на субъективную 
оценку, однако извлекаемые признаки слишком низко-
уровневые, чтобы нейронная сеть научилась его игно-
рировать. 

Сравнительный анализ алгоритмов 

На новом тестовом множестве из 300 изображений 

вычислен коэффициент линейной корреляции (ρ) с экс-
пертными оценками MOS. Результаты приведены в 
табл. 3. Они позволяют сделать вывод о преимуществе 
использования алгоритмов PR и MMA-CNN, обученных 
на колоноскопических изображениях, по сравнению с 
универсальными неэталонными алгоритмами типа 
BRISQUE. 

Таблица 3. Сравнительный анализ  
рассматриваемых алгоритмов  

Алгоритм Коэффициент  
линейной корреляции 

BRISQUE 0,43 
PR 0,88 

MMA-CNN 0,83 
На рис. 6 приведены примеры изображений с экс-

пертными оценками MOS и оценками, полученными 
рассмотренными выше алгоритмами. Видно, что оба 
алгоритма, базирующихся на методах машинного обу-
чения (PR и MMA-CNN), в целом справляются с оцени-
ванием качества изображений, при этом несколько за-
нижая среднюю экспертную оценку. 

Заключение 

В данном исследовании создан тестовый набор ко-
лоноскопических изображений, проведена его эксперт-
ная оценка, оценена корреляция ряда неэталонных ал-
горитмов с экспертными значениями, предложено 2 
собственных алгоритма, использующих методы машин-
ного обучения. 

На данном этапе исследования рассмотрены моде-
ли, использующие только низкоуровневые признаки или 
их статистику распределения. Такие модели менее под-
вержены переобучению на небольшом наборе изобра-
жений, который чаще всего и имеется в распоряжении 
исследователей. 

Дальнейшая работа будет направлена на выявление 
высокоуровневых признаков. С учетом относительно 
небольшого количества изображений в обучающих и 
тестовых наборах потребуется дополнительная размет-
ка с использованием масок или разбиения на патчи, 
чтобы обучить нейронную сеть отыскивать области, 
заслуживающие большего  или меньшего внимания. 

 
а) MOS = 1,8;  

BRISQUE = 131,24;  
PR = 1,4;MMA-CNN = 1,5 

б) MOS = 2,8;  
BRISQUE = 20,64; PR = 3,03;  

MMA-CNN = 2,6 

в) MOS = 4,2; 
 BRISQUE = 43,45; PR = 3,72;  

MMA-CNN = 3,6 
Рис. 6. Изображения с оценками, полученными экспертами (MOS)  

и рассмотренными алгоритмами 
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НОВЫЕ КНИГИ 

 

Поборчая Н.Е. 
Методы и алгоритмы оценивания параметров канала связи в условиях априорной неопре-
деленности в системах с приемником прямого преобразования: Учебное издание для вузов, 
М.: Изд-во «Горячая линия-Телеком», 2023 г. 240 с.: ил. 

Изложены методы и алгоритмы совместного оценивания параметров сигнала (канала связи) в 
условиях априорной неопределенности относительно статистических характеристик канала связи и 
законов распределения шумов. Особое внимание уделено системам с приемником прямого преобразо-
вания. Рассмотрены вопросы синтеза и анализа процедур оценивания для систем связи с одной пере-
дающей и приемной антенной (SISO), с несколькими передающими и приемными антеннами (MIMO), 
а также для систем с ортогональным частотным мультиплексированием (OFDM). 

Предложенные алгоритмы способствуют повышению помехоустойчивости приема информации 
или понижению вычислительной сложности процедур обработки сигнала. 

Для научных работников, инженеров и аспирантов. Может быть полезна студентам старших кур-
сов и магистрантам, обучающимся по направлению подготовки «Радиотехника» и «Инфокоммуника-
ционные технологии и системы связи». 
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Изложен алгоритм оценки чувствительности видеокамер в 
спектральной области на основе вычисления отношения сиг-
нал/шум по распределению спектральной плотности мощности 
сигнала и шума в реальных видеоизображениях. Продемонстрирова-
ны преимущества предложенного алгоритма в сравнении с другими 
подходами. Отмечается, что реализация алгоритма, как элемента 
видеосистемы наблюдения, позволит правильно определять мо-
мент снижения уровня сигнал/шум ниже некоторого порога при 
снижении освещенности сцены для автоматического включения 
режима повышенной чувствительности видеокамер. 

УДК 621.397: 621.391.837: 621.3.011.73: 621.372.544 
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ЕVALUATION OF VIDEO CAMERAS SENSITIVITY 

Drynkin V.N., Tsareva T.I. 
The paper describes an algorithm for assessing the sensitivity of video cameras in the spectral domain based on calculating the 
signal-to-noise ratio from the distribution of the spectral power density of the signal and noise in real video images. The advantages 
of the proposed algorithm in comparison with other approaches are demonstrated. It is noted that the implementation of the algo-
rithm as an element of a video surveillance system will make it possible to correctly determine the moment when the signal/noise 
level decreases below a certain threshold when the scene illumination decreases to automatically turn on the high sensitivity mode 
of video cameras. 

Key words: digital image processing, signal-to-noise ratio, increasing the sensitivity of video cameras, binning, restora-
tion of spatial resolution. 
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изображений, отношение сигнал/шум, повыше-
ние чувствительности видеокамер, биннинг, вос-
становление пространственного разрешения. 

Введение 

Чувствительность является одной из важ-
нейших характеристик видеокамер и определя-
ется минимальным значением уровня полезного 
сигнала на входе, при котором на выходе 
устройства еще обеспечивается допустимое от-
ношение сигнал/шум (ОСШ) [1]. Важно ее знать, уметь 
оценивать и по возможности регулировать. При невоз-
можности регулировки чувствительности съемочные 
возможности видеокамер сильно зависят от условий 
съемки, времени суток, времени года и т.п. В результа-
те наступает момент, когда камера перестает «видеть». 

В системах видеонаблюдения под чувствительно-
стью часто понимают минимальную освещенность (или 
минимальное значение отверстия диафрагмы), при ко-
торой обеспечивается заданное качество изображения 
[2]. При этом на выходе матрицы видеокамеры форми-
руется минимальный уровень сигнала, который можно 
измерить приборами. Но такой подход возможен только 
в лабораторных условиях [3]. На практике чувствитель-
ность оценивают по изображениям, формируемым ви-
деокамерой. 

Оценка чувствительности по контрасту  
и статистическим характеристикам изображений 

В первом приближении чувствительность видеокамеры 
можно оценивать по контрасту сцены, например [4]: 

max min 100%,
B B

K
D


   (1) 

где Bmax, Bmin – усредненные значения яркостей в самой 
светлой и самой темной областях изображения, D – мак-
симальный диапазон яркостей. Для полутонового вось-

мибитного изображения значение D = 255. Однако при 
использовании в видеокамерах автоматических регулиро-
вок усиления такая оценка дает некорректный результат. 

Наиболее часто чувствительность оценивают по 
ОСШ. Отношение уровня радиосигнала к шуму, распре-
деленному в видеоканале, напрямую влияет на каче-
ство изображения. 

В большинстве случаев для оценки чувствительно-
сти по ОСШ используют измерение статистических ха-
рактеристик изображений видеокамеры [5, 6]: 

,sig

sig

SNR



  (2) 

где s i g  – среднее значение сигнала изображения; 

s i g  – стандартное отклонение сигнала изображения. 

Однако, если описанный подход позволяет доста-
точно объективно оценивать ОСШ для тестовых изоб-
ражений и искусственно внесенных шумов, то для ре-
альных видеоизображений подобная формальная экви-
валентность стандартного отклонения в качестве меры 
шума, показывающей насколько выбранные пиксели 
отличаются от средней величины, характеризующей 
полезный сигнал, может быть лишена смысла, так как 
не учитывает пространственные зависимости яркостей 
элементов реального изображения и особенности их 
зрительного восприятия. 
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 а) б) в) 

Рис. 1. Фрагменты изображений с разным уровнем сигнала 

 
 а) б) в) 

Рис. 2. Фрагменты изображений с автотоном 

Проиллюстрируем рассмотренные подходы к оценке 
чувствительности. На рис. 1 приведены фрагменты изоб-
ражений с разным уровнем полезного сигнала, получен-
ные видеокамерой без автоматических регулировок. 

Расчет ОСШ по формуле (2) дает практически оди-
наковый результат: 2,8; 2,8; 2,9, хотя мы видим, что сиг-

нал становится слабее: контраст, рассчитанный по 
формуле (1), дает значения 79,2 %; 20,8 % и 6,7 % для 
фрагментов а), б) и в) соответственно. 

Если же применить к фрагментам а), б) и в), изобра-
женным на рис. 1, автоматическую регулировку тона 
(автотон) (рис. 2), то контраст становится одинаковым, 
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практически равным 100 % (см. гистограммы). 
Приведенные результаты демонстрируют тот факт, 

что показатель контраста K (1) и ОСШ SNR, рассчитан-
ное по статистическим характеристикам изображений 
(2), не дают адекватной оценки чувствительности ви-
деокамер и побуждают искать другие подходы к оценке 
чувствительности. 

Оценка чувствительности по ОСШ в спектральной 
области 

Случайный шум датчика видеосигнала представляет 
собой сложный шум, который образуется как за счет 
внутренних свойств датчика, так и за счет возбуждения 
фотоприемника от воздействия излучения различных 
источников. Такой шум считают аддитивным нормаль-
ным некоррелированным в ограниченной полосе частот 
шумом [7]. 

Формально изображение на выходе датчика видео-
сигнала матричного типа можно описать функцией вида 
[7, 8] 

( , , ) ( , , ) ( , , ) ,f x y t x y t x y tS     (3) 

где ( , , )f x y t  – функция изменения яркости в точке 

( , )x y  на выходе видеодатчика; ( , , )S x y t  – полезная 

составляющая сигнала изображения; ( , , )x y t  – шумо-
вая составляющая на выходе видеодатчика; t  – вре-
менная координата или индекс текущего кадра изобра-
жения. 

Отметим основные особенности выражения (3). Во-
первых, шумовая составляющая ( , , )x y t  представляет 
собой не весь сложный шум, а только его высокоча-
стотную ВЧ компоненту, которую вследствие ее адди-
тивности легко можно отделить от полезного сигнала с 
целью, например, подавления различными методами 
фильтрации на этапе предварительной обработки или 
для вычисления ОСШ. Во-вторых, низкочастотная ком-
понента шума, как правило, находится в области суще-
ствования спектра полезного сигнала изображения, за-
дача выделения ее из полезного сигнала представляет 
собой отдельную проблему и в данной работе не рас-
сматривается. Поэтому в дальнейшем под шумом бу-
дем понимать ВЧ аддитивный шум ( , , )x y t . 

На рис. 3 в качестве примера для плоскости  
пространства изображения в области нормированных 

«горизонтальных» 
2 / 2

x
x X





  и «вертикальных» 

2 / 2
y

y Y





  пространственных частот показан фраг-

мент модуля двумерного дискретного спектра одного 
видеокадра реального изображения ˆ( , ),x y    форми-

руемого видеодатчиком матричного типа. Здесь ,x  

y  – частота элементов и частота строк соответствен-

но, X, Y – межэлементные и межстрочные интервалы 
дискретизации. Белыми линиями ограничена область 
существования основного спектра формируемого изоб-
ражения кадра D0, черными линиями показаны границы 
ближайших побочных спектров дискретизации, между 

которыми сосредоточен аддитивный ВЧ шум. Наиболь-
шую интенсивность ВЧ шум имеет в областях, обозна-
ченных черными кружочками. 

 
Рис. 3. Дискретный спектр видео кадра с ВЧ шумом 

При формировании изображения видеокамерой из 
дискретного спектра выделяется основной спектр, рас-
положенный в начале координат (x, y) = (0, 0), с помо-
щью двумерного фильтра нижних частот (ФНЧ) форми-
рующей системы видеодатчика и подавляются все по-
бочные составляющие дискретного спектра [9]. 

Матричный фотоприемник при формировании изоб-
ражения действует как фильтр пространственных ча-
стот с частотной характеристикой вида [10] 

sin( )sin( )( , ) ,yx
x y

x y

aaK
a a

  
 

   
   (4) 

где a – линейный размер элемента (площадь элемента 
А = а  а). 

Поскольку пространственно-частотная характери-
стика (ПЧХ) формирующего изображение фильтра (4) 
представляет собой прямое произведение одномерных 
функций, то такой фильтр имеет область пропускания в 
виде прямоугольника, схематично изображенного на 
рис. 3 пунктиром, которая охватывает все частотное 
пространство нормированных частот 1 2: 1, 1 .R     

Как видим из рисунка ближайшие к основному спектру 
компоненты ВЧ шума (1), (2), (3) и (4) также будут при-
сутствовать на формируемом изображении. На рис. 4 
показан кадр сформированного видео датчиком изоб-
ражения с ВЧ шумом. 

 
Рис. 4. Видеокадр с ВЧ шумом,  

полученный при низкой освещенности 
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Исследования показывают (см., например, рис. 3), 
что все частотное пространство нормированных частот 
R видеокадра разделяется на область существования 
основного спектра формируемого изображения D0, 
близкую к ромбической, и область существования ВЧ 
аддитивного шума R\D0.  

Метод оценки чувствительности видеокамер по 
ОСШ в частотной области основан на анализе распре-
деления спектральной плотности мощности сигнала и 
шума в реальных видеоизображениях. При этом ОСШ 
SNRТВ предлагается вычислять по формуле [11]: 

0

0

1 2 1 2

1 2 1 2\

( , )
10 lg ,

( , )

ТВD
ТВ

ТВR D

d d
SNR

d d

    

    





  (5) 

где ТВ  – спектральная плотность изображения видео-
кадра, области D0 и R\D0 задаются согласно рис. 5. 

 
Рис. 5. Области существования спектральной плотности 

полезного сигнала видеоизображения D0 и ВЧ шума R\D0 

Сравнение методов оценки  
чувствительности видеокамер 

Многочисленные эксперименты по выбору показате-
ля для оценки чувствительности видеокамер на реаль-

ных изображениях видимого диапазона [12] показали, 
что изменению освещенности сцены в различных су-
точных и сезонных условиях съемки, особенно перед 
наступлением темноты, наилучшим образом соответ-
ствует показатель ОСШ SNRТВ, рассчитываемый по 
формуле (5). На рис. 6 приведены результаты расчётов 
ОСШ SNRТВ для нескольких последовательностей ви-
деокадров, полученных в ясных погодных условиях (для 
исключения влияния сложных метеоусловий), в разное 
время года и в разное время суток. Из рис. 6 видно, что 
непосредственно перед наступлением темноты ОСШ 
SNRТВ начинает резко падать, что отражает уменьше-
ние величины полезного сигнала, формируемого видео-
камерой в темное время суток, при фиксированной чув-
ствительности видеокамеры. 

В качестве примера для сравнения в табл. 1 приве-
дены данные оценки чувствительности по изображени-
ям с разным уровнем полезного сигнала (см. рис. 1 и 2) 
рассмотренными выше методами: по контрасту изобра-
жения К (1), по ОСШ SNR (2) и по ОСШ SNRТВ (5). 

Из табл. 1 видно, что при применении автоматиче-
ских регулировок контраста (в данном случае автотона) 
контраст (1) практически равен 100 % и не отслеживает 
изменение чувствительности видеокамеры, как отмеча-
лось выше. Показатель SNR, рассчитанный по стати-
стическим характеристикам изображений (2), в данном 
случае практически не меняется независимо от уровня 
сигнала и автоматических регулировок контраста, а по-
казатель SNRТВ, рассчитанный по спектральной плотно-
сти видеосигнала (5), дает наиболее адекватный уров-
ню сигнала результат вне зависимости от автоматиче-
ских настроек. 

Полученные экспериментальные результаты дают 
основания предложить показатель SNRТВ в качестве 
основы для оценки чувствительности видеокамер. 

 
Рис. 6. Изменение ОСШ SNRТВ камеры видимого диапазона  

в разное время суток и года 

Таблица. 1. Сравнительная оценка чувствительности видеокамер по разным показателям 

№ п/п Изображение Особенности К, % SNR SNRТВ, дБ 
1. Рис. 1, а 

Без коррекции 
79,61 2,83 38,22 

2. Рис. 1, б 20,40 2,81 34,97 
3. Рис. 1, в 6,27 2,88 26,0 
4. Рис. 2, а 

С автотоном 
99,61 2,69 37,83 

5. Рис. 2, б 99,61 2,61 34,43 
6. Рис. 2, в 99,21 2,87 25,95 
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Заключение 

Предложен метод оценки чувствительности видео-
камер в спектральной области на основе вычисления 
ОСШ по распределению спектральной плотности мощ-
ности сигнала и шума в реальных видеоизображениях. 
Эксперименты с реальными данными показали, что в 
сравнении с другими методами оценки чувствительно-
сти, например, по контрасту и по ОСШ, вычисляемому 
по статистическим характеристикам изображений, 
предложенный метод дает более адекватные оценки 
изменения ОСШ в различных условиях. 

Аппаратная реализация алгоритма вычисления 
ОСШ (5), как элемента видеосистемы, интегрированно-
го в видеокамеру, позволит правильно определять уро-
вень снижения ОСШ ниже некоторого эксперименталь-
но определённого порога для определения момента 
автоматического включения режима повышенной чув-
ствительности, например, на основе биннинга с восста-
новлением пространственного разрешения [4], что поз-
волит расширить диапазон условий применимости ви-
деокамеры при снижении освещенности в темное время 
суток. 

Полученные результаты являются предварительны-
ми и требуют дальнейших исследований, особенно в 
части аппаратной реализации. Но уже сейчас можно 
утверждать, что они могут служить надежной основой 
для совершенствования камер в различных условиях 
видеонаблюдения. 
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Исследуется подход по моделированию и коррекции структурного 
шума («полосатости») на изображениях от систем космического 
наблюдения Земли путем построения дерева вейвлет-пакетного 
разложения и сверточных нейронных сетей. Рассмотрены особенно-
сти решения поставленной задачи при наличии на изображениях сма-
за и расфокусировки. 
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The article discusses an approach to modeling and correcting structural noise ("banding") in images from Earth observation systems 
by constructing a wavelet-packet decomposition tree and convolutional neural networks. The features of solving the problem in the 
presence of blur and defocus in the images are considered. 
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Введение 

Для систем дистанционного зондирования Земли ак-
туальной является задача коррекция структурного шу-
ма, возникающего при съемке земной поверхности с 
помощью приборов с зарядовой связью (ПЗС), скомпо-
нованных в виде линеек или матриц. Подобный шум 
вызван неоднородностью чувствительности отдельных 
фотоприемников и проявляется в виде «полосатости».  

Пусть ( , )B m n  – изображение, формируемое датчиком 
путем сканирования земной поверхности линейками фото-
приёмников. Структурный радиометрический шум можно 
описать аддитивно-мультипликативной моделью [1]:  

*( , ) ( , ) ( ) ( ) ( , ),B m n B m n k n b n e m n      (1) 

где *( , )B m n  – идеальное не искаженное изображение, 

( )k n  и ( )b n  – мультипликативный и аддитивный коэф-
фициенты структурного шума, зависящие от номера 
элемента ,n  но не зависящие от номера строки ,m  

( , )e m n  – случайный аддитивный шум с нулевым сред-
ним.  

Для обработки изображений и коррекции структру-
ных шумов широко применяются алгоритмы на основе 
вейвлет-преобразования [2 – 4].  

В работе авторами [5] предложен эффективный под-
ход к описанию времязависимых структурных искаже-
ний изображений с использованием вейвлет-пакетного 
преобразования. Оптимальное дерево вейвлет-
разложения несёт информацию о структурном шуме, 
оно строится автоматически или автоматизировано на 
основе анализа реальных изображений. По результатам 
проведенного анализа предлагается подход к коррекции 

структурных искажений путем пороговой фильтрации 
вейвлет-коэффициентов.  
Коррекция структурных искажений 

Для этого реальное изображение сперва разлагается 
по вейвлет-пакетам в соответствии с ранее найденным 
по шуму деревом принятия решений [5, 8]. Далее 
вейвлет-коэффициенты фильтруются: 
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где *, l lw w  – исходные и отфильтрованные вейвлет-

коэффициенты для листа разложения ;l  l  – оценка 

СКО структурного шума на l -листе; P  – некоторый 
настраиваемый порог, характеризующий уровень подав-
ления структурного шума; ( )x  – некоторая монотонная 

функция, удовлетворяющая требованиям (0) 0   и 

(1) 1.   Например, можно использовать ( ) ,qx x   где 
1q   – настраиваемый параметр, характеризующий 

степень «жесткости» ограничения шума.  
Далее по отфильтрованным коэффициентам путем 

обратного вейвлет-преобразования формируется восста-
новленное изображение. В силу построения данный под-
ход позволяет хорошо фильтровать аддитивный струк-
турный шум. Даже если реальный шум имеет заметную 
мультипликативную составляющую, то алгоритм останет-
ся работоспособным: в этом случае зависимость шума от 
сюжета будет истолкована как времязависимая состав-
ляющая. Сильные времязависимые искажения для ИК-
датчиков можно рассматривать как аддитивные [6].  
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Для заметных мультипликативных искажений луч-
ший результат можно получить по итерационной схеме: 
сперва находится отфильтрованное изображение, по-
том по исходному и отфильтрованному оценивается 
мультипликативный коэффициент. Этот коэффициент 
можно рассматривать как изображение и снова филь-
тровать вейвлет-пакетами, однако следует учитывать, 
что изменение во времени и соответственно оптималь-
ное дерево вейвлет-пакетов для него может быть дру-
гим, его можно построить с помощью оператора. Далее 
на исходном изображении по фильтрованному коэффи-
циенту корректируется мультипликативная составляю-
щая, а затем на следующей итерации с использованием 
ранее рассмотренного выше подхода – аддитивная.  

В принципе, в данных алгоритмах могут использо-
ваться вейвлеты разного типа, более того, возможен 
выбор разных вейвлетов на различных уровнях разло-
жения. Выбор наиболее подходящих вейвлетов из неко-
торого набора (словаря) может быть произведен авто-
матически с использованием меры «компактности» [5] 
или автоматизировано.   

Если исходное изображение искажено белым шу-
мом, то он будет равномерно разложен по вейвлет-
коэффициентам. В этом плане можно надеяться, что 
рассмотренный выше алгоритм коррекции позволяет 
вместе со структурным шумом бороться и с аддитив-
ным. Однако для этого необходимо, чтобы само изоб-
ражение адекватно описывалось относительно малым 
числом ненулевых вейвлет-коэффициентов. Этого ре-
ально достичь, если дерево вейвлет-разложения фор-
мируется оператором: в этом случае оператор может 
выполнить построение дерева, оптимально «сжимаю-
щего» как структурный шум, так и реальное изображе-
ние. Если же дерево формируется автоматически по 
калибровочному изображению, то нет гарантии, что по-
лученный базис будет подходящим для реальных изоб-
ражений. В этом случае целесообразно оценить пред-
варительно уровень шума e  и если оценка СКО для 

промежуточного изображения ,l eK   где 1K   – 
некий настраиваемый коэффициент, то принятие реше-
ния о разложении должно выполняться либо из сообра-
жений близости дерева к классическому вейвлет-
преобразованию, либо на основе реального изображе-
ния, содержащего характерный сюжет (можно одновре-
менно строить деревья для калибровочного и реального 
изображений).  

Моделирование искажений 
Построенное дерево вейвлет-пакетов можно исполь-

зовать не только для коррекции искаженных изображе-
ний, но и для моделирования соответствующих искаже-
ний. Для этого вейвлет-коэффициенты формируются 
случайно в соответствии с оценками СКО на каждом 

уровне, тогда обратное вейвлет-преобразование даст 
изображение с модельными искажениями. Такие изоб-
ражения можно комбинировать с реальными не иска-
женными изображениями (выступающими в качестве 
эталона) и использовать для тестирования различных 
алгоритмов коррекции и для обучения алгоритмов искус-
ственного интеллекта, например, искусственных 
нейронных сетей.  

Поскольку вейвлет-пакеты обладают мощным сред-
ством описания и коррекции структурных искажений, то 
представляется перспективным включить построенное 
выше вейвлет-разложение в структуру нейронной сети. 
Это легко сделать, поскольку вейвлеты с конечным носи-
телем реализуются через линейную свертку, которая ис-
пользуется в свёрточных нейронных сетях. Соответ-
ственно, нейронная сеть коррекции структурных искаже-
ний включает входные слои вейвлет-разложения, выход-
ные слои вейвлет-восстановления, а между ними – до-
полнительные слои фильтрации коэффициентов (рис. 1).  

В этом смысле предложенные выше подходы к ана-
лизу структурных искажений через вейвлет-пакеты поз-
воляют адаптировать структуру нейронной сети для 
данного класса искажений: архитектура сети фактически 
определяется деревом принятия решения вейвлет раз-
ложения. Это важный результат, поскольку именно про-
ектирование подходящей архитектуры нейронной сети 
является плохо формализуемым этапом (в противопо-
ложность этому обучение – это формально стандартная 
задача минимизации целевой функции потерь). Также 
архитектура нейронной сети хорошо подходит для одно-
временного использования вейвлетов различных типов, 
при этом наиболее подходящие вейвлеты будут выбра-
ны при обучении.  

Фильтрация вейвлет-коэффициентов может осу-
ществляться рядом свёрточных слоёв с нелинейностя-
ми: как известно подобные архитектуры хорошо справ-
ляются с фильтрацией шумов и искажений [9]. Особен-
ностью пакетного вейвлет-разложения является то, что 
на выходе могут присутствовать изображения различных 
размеров, что затрудняет их совместную фильтрацию. 
Поэтому фильтрацию удобно совместить с обратным 
вейвлет-преобразованием, по мере которого осуществ-
ляется постепенное наращивание размерности изобра-
жений. Изображения, достигшие одинаковой размерно-
сти, можно фильтровать совместно сверточными слоями 
с нелинейностями.  

При обучении нейронной сети можно на первом эта-
пе сохранить вейвлет-коэффициенты в свёртках неиз-
менными, обучая только внутреннею фильтрующую 
часть сети. Затем можно продолжить обучение, разре-
шив модификацию параметров свёрток для самих 
вейвлет-преобразований.  

 
Рис. 1.  Архитектура нейронной сети для коррекции структурных искажений 
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Коррекция с учетом смаза и расфокусировки 

При наличии смаза и расфокусировки у датчика за-
дача коррекции структурных искажений значительно 
усложняется – как известно, при коррекции смаза и 
расфокусировки наблюдается подъём (усиление) шу-
мов, в том числе структурного шума [10, 11]. С другой 
стороны, при сильном смазе и расфокусировке исход-
ные изображения в (1) становятся более гладкими, по-
этому резкие детали на B(m,n) заведомо вызваны толь-
ко структурным шумом. Поэтому в целом оценка дерева 
принятия решений о вейвлет-разложении упрощается. 
С другой стороны, требования к точности коррекции 
структурного шума значительно возрастают, поскольку 
слабые остаточные искажения будут усилены при кор-
рекции смаза и расфокусировки.  

Рассмотрим модель смаза и расфокусировки. Пусть 
в (1) изображение 
B*(m,n) = B**(m,n)  H(m,n),   (3) 
где B**(m,n) – идеальное (четкое) изображение без рас-
фокусировки, H(m,n) – функция рассеяния точки датчика, 
 – операция свертки. Для коррекции искажений изобра-
жение после коррекции структурных искажений B*(m,n) 
пропускается через некий инверсный фильтр, в простей-
шем случае линейный фильтр Винера:  
Bвост(m,n) = B*(m,n)  F(m,n),   (4) 

импульсная характеристика которого F(m,n) опреде-
ляется в спектральной области Фурье как 

2
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где ,m n   – пространственные частоты,   – параметр 
регуляризации.  

В силу линейности из (4) следует, что остаточные 
структурные искажения, содержащиеся в B*(m,n), при 
восстановлении будут пропущены через фильтр F(m,n), 
который может иметь достаточно протяженную импуль-
сную характеристику, носящую колебательный харак-
тер. Поэтому корректировать искажения лучше до ин-
версной фильтрации (4). Однако идеальная коррекция 
при этом едва ли будет достигнута, а остаточные иска-
жения будут усилены. Поэтому целесообразно допол-

нительно фильтровать изображение после коррекции 
(4). В принципе, для этой фильтрации можно применить 
описанный выше подход с построением дерева решений 
и фильтрацией, необходимо только учитывать, что ад-
дитивный шум после коррекции (4) – не белый и его ам-
плитуда может быть различна в НЧ и ВЧ – блоках 
вейвлет-разложения, а значит и в различных листьях 
дерева. В принципе, СКО шума может быть оценено 
непосредственно по изображениям в листьях дерева. 
Другой вариант – зная СКО белого шума в (1) и спек-
тральную характеристику фильтра ( , )m nF    можно 

предсказать СКО шума l  в любом l  листе дерева, по-
тому что, как известно [7], пакетное вейвлет-
преобразование локализует пространственные частоты 
по вполне определенных окнах с ( , ) .m n l    В любом 
случае для фильтрации шума применяется коррекция с 
найденными мультипликативным и аддитивным коэф-
фициентами, при которой вместо оценок l  использу-

ются оценки .l  Также при построении дерева принятия 
решений можно учитывать структуру фильтра  

( , ) :m nF    если | ( , ) |m nF    значимо (например, более 

чем на 10-20 %) меняется в пределах ,l  то рекомен-
дуется разложение данного элемента дерева (и соот-
ветствующего частотного поддиапазона )l  на две ча-
сти и далее. Такой подход обобщает построенные в [7] 
«зеркальные» вейвлеты на случай произвольного филь-
тра ( , )m nF    с учетом особенностей смаза, расфоку-
сировки и структурного шума.  

На рис. 2 показан пример применения описанных в 
статье подходов: слева вверху исходное изображение от 
ИК-датчика КА «Электро-Л» № 2 со структурным шумом 
в виде вертикальной «полосатости», справа вверху - 
результат коррекции структурного шума  предложенным 
подходом, слева внизу – результат коррекции расфоку-
сировки, справа внизу – результат вейвлет-фильтрации. 
Можно видеть, что вейвлет-фильтрация достаточно эф-
фективна. Однако коррекция расфокусировки привела к 
росту обычного и структурного шума (стали видны оста-
точные полосы) и необходимости его повторной коррек-
ции, которую удалось успешно выполнить.  
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Рис. 2.  Искаженное ИК-изображение и примеры коррекции «полосатости»,  

расфокусировки и остаточных структурных искажений 

Заключение  

На основе описания времязависимых структурных ис-
кажений изображений с использованием аппарата 
вейвлет-пакетов предложен подход к коррекции струк-
турных искажений путем пороговой фильтрации вейвлет-
коэффициентов. Рассмотрены вопросы генерации мо-
дельных искажений, например, для обучения нейронных 
сетей и тестирования различных алгоритмов. Предложе-
на архитектура свёрточной нейронной сети в сочетании в 
вейвлет-пакетами для эффективной коррекции структур-
ных искажений. На заключительном этапе предложена 
технология коррекции шумов в условиях наличия на 
изображениях смаза и расфокусировки.  
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Предложено алгоритмическое обеспечение, предназначенное 
для создания опорных данных в виде массивов опорных точек мест-
ности. Рассмотрена технологическая схема формирования опор-
ных точек, включающая алгоритмы детектирования характерных 
объектов на спутниковых снимках высокого разрешения, их струк-
турирования и создания абрисов. 
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ALGORITHMS OF REFERENCE DATA CREATION FROM HIGH RESOLUTION 
SATELLITE IMAGERY 

Kuznechov A.E., Ryzhikov A.S., Poshehonov V.I. 
Algorithms for creation of reference data in the form of ground point sets are proposed. Process flow diagram for ground points 
generations is considered, that includes algorithms of feature objects detection on high resolution satellite images, structuring them 
and abrises creation. 

Key words: ground reference point, abris, feature point. 

 
Ключевые слова: опорная точка местности, 

абрис, характерный объект. 

Введение 

Геокодирование спутниковых изображений 
земной поверхности согласно ГОСТ Р 59480-
2021 осуществляется на основе строгой моде-
ли съемки, исходными данными для которой 
является измерительная информация (ИИ), полученная 
от астродатчиков, датчиков угловых скоростей (ДУС) и 
приёмников ГЛОНАСС/GPS. При штатной работе изме-
рительных систем и регулярном проведении калибро-
вочных мероприятий этой информации достаточно для 
обеспечения высокоточной геопривязки материалов 
съемки [1]. Однако в процессе эксплуатации космиче-
ского аппарата (КА) могут возникать нештатные ситуа-
ции, приводящие, например, к сбоям в работе астро-
датчиков [2]. В результате снижается точность опреде-
ления элементов внешнего ориентирования камеры и, 
как следствие, точность геокодирования получаемых в 
ходе наземной обработки информационных продуктов. 
Поэтому для сохранения измерительных свойств рас-
пространяемых потребителям видеоданных в процессе 
обработки должна привлекаться высокоточная опорная 
информация, на основе которой уточняются параметры 
строгой модели съёмки. 

В настоящее время при обработке данных от КА се-
рий «Ресурс-П», «Канопус-B» применяется технология 
автоматического устранения грубых ошибок геодезиче-
ской привязки по синтезированному из снимков КА 
«Landsat-8» непрерывному опорному покрытию [3]. Это 
позволяет при нештатной работе измерительных си-
стем спутника формировать выходные продукты, геоко-
дированные с точностью опоры, то есть 20-25 м. Понят-
но, что для снижения этой величины до единиц метров 
следует использовать более точные опорные данные. 

В работе [4] предложена концепция поддержания 
точностных характеристик материалов съемки на основе 
опорных точек местности (ОТМ), формируемых при 

штатной работе измерительных систем КА. Согласно этой 
концепции, спутник осуществляет съемку больших пло-
щадей с различными углами крена. На основе получен-
ных изображений формируются массивы ОТМ. Каждая 
ОТМ представляет собой кортеж ( , , , ),c a p e  где 

( , , )c h   – широта, долгота и высота характерного 

объекта соответственно; ( , )a b x y  – ортотрансформи-
рованное изображение этого объекта в картографической 
проекции (абрис), центр которого соответствует коорди-
натам ( , );   ( , )hp    – точность координат опорного 
объекта в плане и по высоте; е – сопроводительная ин-
формация (дата съемки, идентификатор КА и т.д.). 

При решении задачи уточнения строгой модели 
съемки ОТМ обладают рядом преимуществ перед не-
прерывным покрытием аналогичного разрешения. Во-
первых, объем данных и вычислительная сложность 
актуализации опоры на порядки меньше. Во-вторых, 
детектирование характерных объектов при формирова-
нии ОТМ позволяет ускорить этап уточнения геодезиче-
ской привязки снимков, к которому предъявляются жёст-
кие требования по быстродействию. В-третьих, возмож-
ность учёта точностных характеристик ݌ каждой ОТМ 
позволяет создать единую опору из снимков c различ-
ными характеристиками (в т.ч. от разных КА). При уточ-
нении параметров строгой модели геопривязки по мето-
ду наименьших квадратов ݌ определяет вес (степень 
влияния) каждой ОТМ. 

Целью работы является создание алгоритмического 
обеспечения комплекса автоматического формирования 
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опорного покрытия в виде набора ОТМ, используемых 
при уточнении элементов внешнего ориентирования 
строгой модели съемки для сохранения точностных ха-
рактеристик выходных информационных продуктов от 
КА при нештатной работе его измерительных систем. 
Для достижения поставленной цели в работе решаются 
следующие задачи: 

– разрабатывается технологическая схема форми-
рования ОТМ с оценкой точности; 

– разрабатываются алгоритмы детектирования ха-
рактерных объектов для создания абрисов ОТМ; 

– разрабатываются алгоритмы структурирования 
(обеспечения равномерного распределения) ОТМ по 
земной поверхности. 

Технологическая схема формирования ОТМ  
в потоковом режиме 

Технология автоматического формирования ОТМ 
основана на следующих конструктивных технических 
решениях. 

Первое. Для обеспечения высоких точностных ха-
рактеристик формируемых ОТМ следует использовать 
маршруты съемки от КА высокодетального наблюдения 
типа «Ресурс-П», «Ресурс-ПМ», «РБКА», сопровождае-
мые полнофункциональной измерительной информаци-
ей (ИИ). 

Второе. Распознавание характерных объектов ОТМ 
должно выполняться в автоматическом режиме. 

Третье. С целью сокращения избыточности и обес-
печения равномерного распределения ОТМ по земной 
поверхности технология должна предусматривать опе-
рацию структурирования ОТМ по ячейкам координатной 
сетки и контроль избыточности. 

В соответствии с этими решениями в последова-
тельность действий при потоковой каталогизации сним-
ка высокого разрешения добавляется комплекс алго-
ритмов автоматического формирования ОТМ, состоя-
щий из следующих шагов: 

1. Определение полноты ИИ. На этом шаге анализи-
руется наличие данных от астродатчиков, ДУС и т.д. На 
основе этой информации оценивается точность опре-
деления элементов внешнего ориентирования. Если 
точность неудовлетворительна (например, отсутствуют 
измерения двух и более астродатчиков КА «Ресурс-П»), 
выполняется прерывание алгоритма. 

2. Обработка исходных видеоданных для получения 
продукта уровня 1 – геокодированного и радиометриче-
ски скорректированного изображения ( , ).b m n  

3. Детектирование: определение на изображении 
( , )b m n  планарных координат I  характерных объектов 

{( , )}, {1,... },i im n i I  пригодных для формирования ОТМ. 

4. Оценка точности ip  определения геодезических 

координат ic  каждого характерного объекта. 

5. Структурирование: оценка параметров совместного 
распределения найденных объектов и уже имеющихся 
ОТМ по ячейкам регулярной координатной сетки и после-
дующая отбраковка избыточных с целью обеспечения 
равномерного распределения ОТМ в пространстве. 

6. Формирование абрисов ОТМ. На этом шаге путём 
ортотрансформирования фрагментов исходного снимка 

( , )b m n  создаются абрисы ( , )i ia b x y  в картографиче-

ской системе координат и заполняются метаданные .ie  

 
Рис. 1. Технологическая схема формирования ОТМ 

Соответствующая технологическая схема автомати-
ческого создания покрытия ОТМ представлена на рис. 1. 
В приведенной схеме геокодирование изображений 
уровня обработки 1 основано на строгой модели съемки 
[5], позволяющей рассчитать для каждого пикселя ( , )m n  

его геодезические координаты ( , )   точки пересечения 
визирного луча с референц-эллипсоидом на высоте 

: ( , , , , , ),h m n h   Ω Θ q ( , , , , , ),F m n h  Ω Θ q  где Ω  – 
вектор входных параметров, описывающих элементы 
внешнего ориентирования, ,Θ  q  – векторы, описываю-
щие элементы внутреннего ориентирования камеры и 
конструктивные углы астродатчиков. 

Опуская особенности модели видеотракта конкрет-
ных съемочных устройств [6], среднеквадратическая 
ошибка (root mean square deviation, СКО) измерения 
плановых координат характерных объектов   в общем 
случае определяется точностью измерения угловых и 
линейных элементов внешнего ориентирования и зави-
сит от точности используемой для ортотрансформиро-
вания цифровой модели рельефа (ЦМР), 

2 2 2 ,L A E         (1) 

L  – СКО определения линейных элементов внешнего 
ориентирования, характеризующаяся точностью работы 
приемников ГЛОНАСС/GPS; A  – СКО, вызванная не-
точностью измерения углов тангажа   и крена   съе-
мочного устройства, 

2 2 ,A H         (2) 

где ,    – погрешность измерения углов крена и тан-

гажа в радианах, H  – высота съемки. 
СКО смещения плановых координат объекта E  зави-

сит от точности используемой ЦМР h  и угла отклонения 

от надира ,  

( ) sintan arcsin ,E h
R H

R


 
    

     (3) 

где R  – радиус Земли. 
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При использовании внешней ЦМР точность высоты 
характерных объектов равна .h  Если ОТМ формиру-

ются в ходе стереосъемки, то значение h  определяет-
ся из соотношения 

2 2

,
/

L A
h B H

 



   (4) 

где ܤ – величина стереобазы. 
Таким образом с использованием соотношений (1-4) 

определяются точностные характеристики каждой ОТМ, 
что является весьма важным для последующего выпол-
нения процедуры геодезического ориентирования. 

Алгоритмы детектирования характерных объектов 

Важным составным элементом разрабатываемого 
комплекса является алгоритм автоматического детекти-
рования подходящих для формирования ОТМ харак-
терных объектов на спутниковых снимках высокого про-
странственного разрешения. Ключевое свойство ОТМ – 
возможность надёжной автоматической идентификации 
на других изображениях ДЗЗ высокого разрешения пу-
тем корреляционно-экстремального поиска абриса [7]. 
Для достижения этого свойства необходимо обеспечить 

а) уникальность характерного объекта в пределах 
абриса; 

б) контрастность и различимость объекта, достаточ-
ную для субпиксельной идентификации; 

в) устойчивость (отсутствие существенных сюжетных 
различий в окрестности объекта на разновременных 
снимках). 

Детектор Харриса. В работе [8] для определения 
характерных объектов на снимках с пространственным 
разрешением 10 метров предложено использовать де-
тектор Харриса – один из наиболее эффективных [9] де-
текторов углов. Авторы указывают, что в связи с особен-
ностями детектора объекты преимущественно распола-
гаются по границам береговых линий. Такое распределе-
ние удовлетворительно для уточнения геодезической 
привязки данных среднего разрешения от КА, характери-
зующихся широкой полосой обзора. Однако при обработ-
ке данных от КА высокого пространственного разрешения 
с полосой обзора 20-40 км крайне важно обеспечить мак-
симально равномерное распределение ОТМ. 

В связи с этим исследовано поведение оператора 
Харриса на изображениях субметрового разрешения. 
Величина отклика оператора Харриса 0 0( , )R m n  для 

объекта изображения ( , )b m n  с координатами 0 0( , )m n  
определяется путем анализа градиента в окне 

0 0{( , ), , },k k k kW m n m m w n n w      где w  – раз-

мер окна. Градиент в окне ܹ описывается матрицей 

0 0

2

( , ) ( , )
( , ) 2

( , ) ( , )

( )
,

( )
k k k k

k k k k

n m n
k k k

m n W m n W
m n m n n

k k k
m n W m n W

 

 

   
 

     
 

 

 
G    (5) 

где ,m
k  n

k  – частные производные b  в точке ( , )k km n  
по осям n  и m  соответственно. 

0 0 0 00 0 ( , ) ( , )( , ) det trace ,m n m nR m n k  G G   

где 0, 04k   – эмпирическая константа. Значение R  
велико в точках, в которых градиент (5) изображения b  
быстро растёт в двух направлениях; обычно на углах 
некоторого объекта. 

Масштаб пространства поиска характерных объектов 
фиксирован и определяется параметром ,w  который 
обычно принимается равным 2 (окно W  размером 3×3). 
Однако на снимках высокого разрешения при малых w  
наибольший отклик детектора дают деревья, кусты, ма-
шины и подобные локально-характерные объекты с ли-
нейными размерами порядка нескольких метров, кото-
рые в отсутствии характерного окружения не могут быть 
надежно идентифицированы на разновременных изоб-
ражениях (рис. 2, а). Увеличение w  позволяет детекти-
ровать более крупные объекты, но с меньшей точностью 
(рис. 2, б). Поэтому для точного детектирования харак-
терных участков объектов заданного размера рекомен-
довано [10] строить пирамиду разномасштабных изоб-
ражений 2 4( , , ,...),b b b

 
 где ib


 – дискретная функция 

изображения ܾ, прореженного в i  раз, и последователь-
но уточнять координаты на каждом уровне масштаба 
(рис. 2, б). Пирамидальное представление позволяет 
снизить размерность задачи с сопутствующим ростом 
производительности и одновременно получить коорди-
наты характерных объектов заданного масштаба с пик-
сельной точностью. 

 
а) в масштабе 1:1 б) в масштабе 1:8 в) по пирамидальному  

представлению 
Рис. 2.  Характерные объекты изображения, найденные детектором Харриса  

на изображении городской застройки с разрешением 0,7м  
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Рис. 3.  Диаграмма размаха, отображающая распределение доли некондиционных ОТМ в зависимости от детектора и сюжета 

Согласно экспертной оценке (рис. 3), на изображе-
ниях с большим количеством техногенных объектов 
результаты работы пирамидального детектора Харриса 
приемлемы: 16-24 % ошибок первого рода (количество 
ложных срабатываний детектора, в результате которых 
для формирования ОТМ отобран объект, точная авто-
матическая идентификация которого на снимке невоз-
можна: тени, углы высотных зданий и т.п., то есть 
сформирована некондиционная ОТМ). Однако в сюже-
тах без населённых пунктов (лес, поля) доля таких ОТМ 
составляет 29-52 %: деревья в плотном лесном масси-
ве, тени от них, берега рек и т.п. При этом автоматиче-
ски отбраковывать такого рода объекты по величине 
отклика R  не представляется возможным. 

Детектор пятен (blobs). Детектор Харриса показал 
неудовлетворительные результаты в лесных и степных 
районах, где наиболее устойчивыми являются отдельно 
стоящие низкие природные объекты: локальные обла-
сти с постоянной яркостью, отличной от фона. Подоб-
ные характерные особенности потенциально могут быть 
обнаружены детекторами пятен, основанными на ана-
лизе пирамиды Лапласиан Гауссиана (Laplacian of the 
Gaussian, LoG) или разностей Гауссиан (Difference of 
Gaussians, DoG). Эти детекторы и их вариации приме-
няются при построении дескрипторов, описывающих 
ключевые точки изображений в алгоритмах SIFT, SURF, 
ORB, MSER. 

В работе [3] алгоритм SURF рекомендован в каче-
стве одной из ключевых частей механизма идентифика-
ции одноименных объектов на спутниковых снимках. 
Отмечено, что в рамках поставленной задачи с его по-
мощью достигается оптимальный баланс скорости об-
работки и доли ложных идентификаций. Детектор SURF 
принимает решение об отнесении объекта к характер-
ным на основе анализа величины определителя матри-
цы Гессе (Fast-Hessian Detector) – аппроксимации DoG, 
позволяющей в несколько раз ускорить вычисления це-
ной снижения точности. В задаче детектирования ОТМ 
первоочередным фактором является возможность по-
следующей надёжной идентификации характерных 
объектов, а не скорость их определения. 

По этой причине для эксперимента выбран детектор 
на основе DoG (используется в алгоритме SIFT) как 
один из наиболее устойчивых [11]. 

Доля объектов, ложно отнесённых алгоритмом SIFT 
к характерным в сюжетах без населённых пунктов (лес, 
поля), снизилась до 20-41 %. В отличие от детекторов 
углов, детекторы на основе DoG часто выделяют при-

родные и техногенные объекты округлой формы, в част-
ности отдельные элементы крыш и засветы, крупные 
кусты и т.п. (рис. 4, 5). В связи с этим доля ошибок пер-
вого рода на городских сюжетах больше, чем при ис-
пользовании детектора углов: от 17 до 39 %. 

Таким образом детекторы Харриса и DoG находятся 
в паритете. Первый даёт лучшие результаты в городской 
застройке, где присутствует множество домов, площа-
дей и подобных объектов, фрагменты которых являются 
характерными с точки зрения детектора углов. Детектор 
«пятен» алгоритма SIFT относит к характерным объек-
там отдельно стоящие кусты, деревья и т.п. участки 
местности, которые являются хорошими кандидатами 
для формирования ОТМ в условиях отсутствия техно-
генных объектов. В связи с этим рассмотрена возмож-
ность создания гибридного алгоритма, автоматически 
переходящего к одному из детекторов в зависимости от 
априорно известного характера подстилающей поверх-
ности. На этом этапе проведена попытка применить от-
крытые картографические данные OpenStreetMap (OSM) 
для классификации типа сюжета. К сожалению, в связи 
со слабой стандартизацией тегов OSM, нестабильным 
качеством и детализацией картографической основы, 
надежно решить эту задачу не удалось. 

Подходы к классификации сюжета без использова-
ния априорной информации (в частности, с привлечени-
ем машинного обучения) не применялись в связи с их 
высокой вычислительной сложностью. 

Детектор на основе контуров. По результатам ана-
лиза работы оператора сделан вывод, что хорошими 
кандидатами в опорные точки являются углы прямо-
угольных объектов с контрастными границами (капи-
тальные строения, площадки, навесы, бассейны, иные 
стационарные искусственные объекты). Подобные объ-
екты могут быть найдены детектором Харриса, но боль-
шая доля ошибок первого рода не позволяет построить 
универсальное решение на его базе. Общая причина 
ошибок – недостаток информации при принятии реше-
ния, т.к. детекторы углов анализируют градиенты ло-
кальных участков изображения и не владеют более ши-
роким контекстом: геометрией объектов, морфологиче-
скими свойствами и т.п. Нередко для высокоуровневого 
анализа изображений применяются алгоритмы обработ-
ки контуров [12-14]. С целью снижения доли ошибок раз-
работан альтернативный детектор характерных объек-
тов, основанный на контурном анализе текстуры изоб-
ражений. Входные данные алгоритма: { ( , )}B b m n  – 
анализируемое  изображение,  q   –  порог  чувствитель- 
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а) Отдельно стоящее дерево б) Отдельно стоящее дерево в) Группа деревьев 

Рис. 4.  Изображения детектированных с помощью SIFT характерных объектов в лесном массиве 

 
а) Фрагмент крыши  б) Фрагмент крыши  в) Засвет 

Рис. 5.  Изображения детектированных с помощью SIFT характерных объектов в населённом пункте 

 
а) Исходное  
изображение 

б) Выделенные  
границы 

в) Контуры 
г) Результат 
отбраковки 

Рис. 6. Результаты выполнения основных этапов предлагаемого алгоритма 

ности детектора. Алгоритм состоит из шести последова-
тельных шагов. 

1. Сглаживание анализируемого изображения раз-
мытием по Гауссу: Blur( ).GB B . 

2. Формирование бинарного изображения границ пу-
тём применения оператора Кэнни: Canny( ).C GB B  

3. Извлечение контуров объектов [15]: 
BorderFollowing( )CA B . 

4. Их аппроксимация (сглаживание) по алгоритму 
Рамера-Дугласа-Пекера: DouglasPeucker( ).C A  

5. Отбраковка контуров объектов из C  по ряду критери-
ев, включая анализ площади, оценку симметрии и схожести 
формы контура с прямоугольной: Filter( , ).C C q   

6. Оценка контрастности объектов C  и резкости их 
границ с занесением углов объектов с наибольшим зна-
чением автокорреляционной функции в список харак-
терных. 

На рис. 6 изображены промежуточные результаты 
основных этапов алгоритма. 

Эксперименты показали, что доля ошибок первого 
рода на городских сюжетах составляет 2-11 % и не бо-
лее 14 % – на прочих. Примечательно, что и вне городов 
детектируются искусственные объекты – частные дома, 
навесы, бассейны, хозяйственные постройки (рис. 7). На 
специально отобранных сюжетах с полным отсутствием 
техногенных объектов (тайга) формирование ОТМ не 
происходит. 

Гибридный  алгоритм  детектирования.  В  соответ- 
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        а)                                  б)                        в)  

 
      г)                                  д)                        е)  

Рис. 7.  Результаты алгоритма на основе контурного анализа: характерные объекты в (а-в) и вне (г-е) городов 

ствии с результатами экспериментов для автоматиче-
ского формирования ОТМ предложен гибридный алго-
ритм детектирования характерных объектов, позволя-
ющий объединить сильные стороны нескольких детек-
торов. На первом этапе осуществляется детектирова-
ние на изображении B  характерных объектов с помо-
щью предложенного выше алгоритма на основе анализа 
контуров. Далее производится оценка распределения 
сформированного множества объектов по площади 
участка суши земной поверхности, соответствующего 
территории маршрута съемки. В случае, если количе-
ство характерных объектов на некоторых фрагментах 

1 2, ,...B B  признается недостаточным (обычно вне насе-
ленных пунктов), эти фрагменты поступают на вход де-
тектора на основе DoG, а извлечённые характерные 
объекты дополняют результирующее множество. 

Алгоритм структурирования характерных объектов 
КА высокого разрешения осуществляют съемку кон-

кретных участков земной поверхности по заявкам по-
требителей, в результате чего частота обработки изоб-
ражений различных регионов существенно различается. 
В то же время для успешного контроля и уточнения гео-
дезической привязки ОТМ должны равномерно покры-
вать сушу с шагом, меньшим полосы захвата съемочно-
го устройства. В связи с этим при создании новых ОТМ 
необходимо учитывать взаимное положение характер-
ных объектов, точность и плотность покрытия региона 
уже существующими ОТМ. С этой целью предлагается 
ввести регулярную сетку в системе координат ( , )   с 
помощью функций 

( )
( ) ,i Ri

L
 


    

  
( 2)

( ) ,i Ri
L

 


    
  

где ( , )i i   – геодезические координаты i-го характерно-

го объекта в радианах, ( ),i  ( )i  – координаты соот-

ветствующей ячейки, L  – размер стороны ячейки в мет-
рах на экваторе. 

Алгоритм структурирования на этапе добавления но-
вых ОТМ состоит из следующих шагов. 

1. Формируем множество индексов уникальных яче-
ек, в которых расположены характерные объекты: 
{ : {1, }

( ) ( ) ( ) ( )}.
z

i j i j

v z I i j

v v v v   

   

      
 

2. Выбираем в каждой ячейке zv  не более ( )zq   
объектов, наиболее удаленных друг относительно друга 
и от уже существующих в покрытии ОТМ. Определение 

( )q  задает максимальное количество ОТМ, которое 
может быть добавлено в одну ячейку регулярной сетки. 
С учётом того, что площадь ячейки в метрах уменьшает-
ся с приближением к полюсам, будем нормировать мак-
симальное количество ОТМ в зависимости от широты: 

0( ) / sec ,q q      где 0q  – количество ОТМ в одной 
ячейке на экваторе. 

3. Формируем на основе выбранных объектов ОТМ и 
заносим их в покрытие. 

Для вычислительно эффективной программной реа-
лизации шага 2 необходимо задействовать структуру 
данных, обеспечивающую  асимптотически быстрый  по- 
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иск ближайших соседей. Для этого используем двумер-
ное двоичное дерево поиска, построенное в простран-
стве ( , )   [16]. 

Заключение 

Рассмотренное в статье алгоритмическое обеспече-
ние комплекса автоматического формирования ОТМ 
программно реализовано и отработано на панхромати-
ческих изображениях КА серии «Ресурс-П». Практиче-
ское использование комплекса предусмотрено при по-
токовой обработке информации от планируемых к за-
пуску КА «Ресурс-ПМ». Высокая унификация предло-
женных алгоритмов позволяет также формировать ОТМ 
по данным КА «РБКА» и «Аист-2Т». 

Дальнейшие исследования в этой области авторы 
связывают с разработкой сервисных средств актуали-
зации покрытия ОТМ, обеспечивающих замещение ме-
нее точных ОТМ более точными, созданием сезонных 
слоёв ОТМ, повышением надёжности опорных данных с 
учётом рекомендаций, получаемых от комплекса полу-
чения выходных информационных продуктов. 
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Поставлена задача оптимального обнаружения когерентно-
импульсных сигналов движущихся целей на фоне пассивных помех при 
априорной неопределенности параметров сигналов и помех. Целью 
статьи является синтез и анализ адаптивных систем обнаружения 
сигналов. Алгоритм оптимального обнаружения сигналов на фоне 
пассивных помех определяется вычислением отношения правдоподо-
бия. Реализация полученного алгоритма оптимальной линейной 
фильтрации предполагается на основе адаптивного матричного 
фильтра и неадаптивного многоканального фильтра. Синтезирован 
квазиоптимальный алгоритм оценивания доплеровской фазы сигнала 
по выходным отсчетам адаптивного матричного фильтра. Модели-
рованием на ПЭВМ установлено, что асимптотические свойства 
получаемых оценок являются приемлемыми для их использования при 
адаптивном накоплении сигнала. Предложен алгоритм обнаружения с 
адаптивным накоплением сигнала. Данный алгоритм сочетает 
адаптацию к параметрам помехи и к доплеровской фазе сигнала. 
Адаптация к параметрам помехи осуществляется в адаптивном 
матричном фильтре, по выходным отсчетам которого вычисляется 
оценка доплеровской фазы сигнала, используемая при его адаптив-
ном накоплении. Приведена структурная схема системы адаптивно-
го обнаружения сигнала. Моделированием на ПЭВМ определена оп-
тимальная величина расстройки доплеровских каналов адаптивного 
накопления сигнала. Установлено, что при допустимом уровне по-
терь до 2 дБ число доплеровских каналов может быть сокращено в 
четыре раза. Использование в системах обнаружения с адаптивным 
накоплением сигнала оценок доплеровской фазы сигнала позволяет 
сократить число доплеровских каналов или при прежнем числе допле-
ровских каналов расстройку между каналами, исключив межканаль-
ные потери. 
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АДАПТИВНОЕ ОБНАРУЖЕНИЕ СИГНАЛОВ НА ФОНЕ ПАССИВНЫХ ПОМЕХ 

Попов Д.И., д.т.н., профессор кафедры радиотехнических систем Рязанского государственного радиотехни-
ческого университета им. В.Ф. Уткина, e-mail: adop@mail.ru 

ADAPTIVE SIGNAL DETECTION ON THE BACKGROUND CLUTTER 

Popov D.I. 
The article poses the problem of optimal detection of coherent-pulsed signals of moving targets against a background of clutter with 
a priori uncertainty of the signals and clutter parameters. The aim of the article is the synthesis and analysis of adaptive signal de-
tection systems. The algorithm for optimal detection of signals against a background of clutter is determined by calculating the likeli-
hood ratio. The implementation of the obtained algorithm for optimal linear filtering is assumed on the basis of the adaptive matrix fil-
ter and the non-adaptive multichannel filter. A quasi-optimal algorithm for estimating the Doppler phase of the signal from the output 
samples of the adaptive matrix filter is synthesized. Modeling on a PC has established that the asymptotic properties of the obtained 
estimates are acceptable for their use in adaptive signal accumulation. A detection algorithm with adaptive signal accumulation is 
proposed. This algorithm combines adaptation to the clutter parameters and to the Doppler phase of the signal. Adaptation to the 
clutter parameters is carried out in an adaptive matrix filter, from the output samples of which an estimate of the Doppler phase of 
the signal is calculated, used during its adaptive accumulation. A block diagram of the adaptive signal detection system is given. 
The optimal size of the detuning of Doppler channels of adaptive signal accumulation is determined by PC simulation. It is estab-
lished that with an allowable loss level of up to 2 dB, the number of Doppler channels can be reduced by a factor of four. The use of 
Doppler signal estimation in detection systems with adaptive signal accumulation allows reducing the number of Doppler channels 
or, with the same number of Doppler channels, detuning between channels, eliminating interchannel losses. 

Key words: adaptation, analysis, Doppler phase, matrix filter, detection, evaluation, clutter, signal, synthesis. 
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Введение 

Обнаружение когерентно-импульсных сиг-
налов на фоне коррелированных (пассивных) 
помех, обусловленных мешающими отражени-
ями, является одной из актуальных и трудных 
задач обработки радиолокационных данных [1-
3]. Несовершенство аналоговой техники (уль-
тразвуковых линий задержки и потенциалоско-
пов) в прошлом существенно тормозило про-
гресс в развитии средств защиты от пассивных 
помех. Применение цифровой обработки сиг-
налов позволило преодолеть указанную труд-
ность и реализовать подоптимальный процес-
сор обработки сигналов на основе цифрового 
фильтра для подавления помехи [4]. Использо-
вание цифровой техники выдвинуло на первый 
план задачи принципиального характера и при-
вело, в частности, к построению режекторных 
фильтров с адаптацией к доплеровской фазе 
пассивной помехи. 

На современном этапе развития данной об-
ласти априорная неопределенность спектраль-
но-корреляционных характеристик пассивных 
помех, а также их неоднородность и нестацио-
нарность в зоне обзора сохраняют свою актуаль-
ность, что стимулирует инновационное развитие радио-
локационных систем и методов обработки радиолока-
ционных сигналов. Преодоление априорной неопреде-

ленности параметров помехи основывается на оптими-
зации алгоритмов обработки в зависимости от парамет-
ров помехи и последующей замене в соответствии с 
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методологией адаптивного байесовского подхода неиз-
вестных параметров их состоятельными оценками. 

Основной операцией выделения сигналов движу- 
щихся целей является режектирование спектральных  
составляющих помехи, что приводит к построению  
адаптивных режекторных фильтров (РФ). Метод синте- 
за адаптивных РФ сводится к выбору вектора весовых  
коэффициентов РФ по энергетическому критерию –  
максимуму усредненного по доплеровской фазе сигнала  
выигрыша в отношении сигнал/помеха, что приводит, в 
частности, к алгоритмам адаптивного режектирования 
помехи с комплексными весовыми коэффициентами и 
соответствующим адаптивным режекторным фильтрам 
(АРФ) [5]. Реализация данных АРФ в цифровом виде 
требует высокого быстродействия выполнения арифме-
тических операций. Избежать указанных трудностей 
можно путем предварительной компенсации доплеров-
ского сдвига фазы помехи. В работах [6, 7] синтезиро-
ваны алгоритмы оценивания и предложены принципы 
построения и структурные схемы автокомпенсаторов 
доплеровской фазы пассивных помех с прямой и обрат-
ной связью. Особенности адаптации к корреляционным 
свойствам помехи на выходе автокомпенсатора и по-
следующего ее режектирования рассмотрены в работе 
[8]. Определенное упрощение процедуры адаптации 
достигается в АРФ каскадного типа, описанных в работе 
[9]. Другим вариантом упрощения процедуры адаптации 
является переход от комплексных весовых коэффици-
ентов к действительным, что ограничивает область це-
лесообразного применения соответствующих АРФ при 
ограниченной и сравнительно малой в зависимости от 
порядка фильтра и ожидаемых параметров помехи ве-
личине ее доплеровской скорости [10]. Компромиссное 
решение достигается в фильтрах с частичной адапта-
цией к доплеровской фазе помехи и оптимизацией ха-
рактеристик режекторных фильтров в априорном диапа-
зоне изменения спектрально-корреляционных парамет-
ров помехи [11]. Повышение эффективности режектор-
ных фильтров высоких порядков достигается при опти-
мизации их параметров по вероятностному критерию 
[12]. Предложенный в данной работе метод оптимиза-
ции РФ по вероятностному критерию позволяет полу-
чить существенные выигрыши в эффективности обна-
ружения сигналов по сравнению с оптимизацией по 
энергетическому критерию. 

При проектировании радиолокационных систем об-
наружения сигналов движущихся целей на фоне пас-
сивных помех неизменно остается вопрос о предельной 
эффективности обнаружения сигналов, к которой долж-
но стремиться качество реальной системы. Данный 
предел устанавливается в результате синтеза и анали-
за оптимальной системы, вытекающей из процедуры 
статистического синтеза. Реальные системы не бывают 
полностью эквивалентными соответствующим теорети-
ческим оптимальным системам. Однако сравнение 
структур и эффективности оптимальных и реальных 
систем в заданных условиях указывает пути усовер-
шенствования последних и позволяет определить сте-
пень целесообразности такого усовершенствования и 
поиска новых систем. Ниже синтезируется система 

адаптивного оптимального обнаружения сигналов на 
фоне пассивных помех. 

Синтез адаптивного алгоритма обнаружения 
Полагаем, что в когерентно-импульсной радиолока-

ционной системе (РЛС) поступает последовательность 
N  цифровых отсчетов ij j jU x y   комплексной оги-

бающей аддитивной смеси сигнала, пассивной помехи и 
собственного шума, следующих через период повторе-
ния T  и образующих в одном элементе разрешения по 

дальности вектор-столбец т{ } ,jUU  1,j N  ( "т"  – 
символ транспонирования). Сигнал и помеха являются 
узкополосными случайными процессами гауссовского 
типа. Статистические свойства вектора т{ }jUU  опи-

сываются с точностью до параметров его корреляцион-
ной матрицы R  совместной плотностью вероятности 

т1( ) (2 ) (det ) exp ,
2

NP      
 

U W U WU  (1) 

где W  – матрица, обратная корреляционной матрице 
т 2 2

п ш2( ) ,  R UU  которая для аддитивной смеси 
сигнала, пассивной помехи и собственного шума пред-
ставляется в виде сп с п . R R R  

Элементы матриц сR  и пR  при симметричных спек-
трах сигнала и помехи имеют соответственно вид 

сi ( )c c e / (1 ),j k
jk jkR q     

пi ( )п п( e ) / (1 ),j k
jk jk jkR       

где 2 2
c п/q    – отношение сигнал/помеха; c

jk  и п
jk  – 

коэффициенты межпериодной корреляции сигнала и 
помехи; с дс2 f T   и п дп2 f T   – доплеровские 

сдвиги фазы соответственно сигнала и помехи за пери-
од повторения ;T  с

дс 2 /rf v f c  и п
дп 2 /rf v f c  – до-

плеровские частоты сигнала и помехи; с
rv  и п

rv  – ради-

альная скорость цели и источника помехи; f  – несущая 
частота РЛС; c  – скорость распространения радиоволн; 

2 2
ш п/    – отношение шум/помеха; jk  – символ 

Кронекера. 
Алгоритм оптимального обнаружения сигнала опре-

деляется в результате вычисления отношения правдо-
подобия сп п( ) ( ) / ( )P P U U U  [13], которое при исполь-

зовании плотностей вероятности сигнала и помехи сп ( )P   

и одной помехи п ( ),P   соответствующих (1), принимает 
вид 

т1( ) exp ,
2

C     
 

U U QU      (2) 

где сп пdet / det ;C  W W  п спl  Q W W  – матрица об-

работки, удовлетворяющая уравнению c п( ) Q R R  

п c , W R  решение которого определяет вид алгоритма 
обработки. 

Отношение правдоподобия (2) является монотонной 
функцией статистики 

т
0 ,u u U QU  
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где 0u  – пороговый уровень обнаружения. 

Вычисляя матрицу Q  при совместных флюктуа-

циях сигнала c( 1),jk   с точностью до постоянного 

множителя получаем статистику 2| | ,u X  в основе 
которой лежит алгоритм оптимальной линейной 
фильтрации 

сi

1 1
e ,

N N
k

jk j
k j

X W U 

 

     (3) 

где п
jk jkW W  – элементы обратной корреляционной 

матрицы помехи. 

При симметричном спектре помехи пi ( )e .j k
jk jkW w   

Тогда 

c п пi ( ) i

1 1
e e .

N N
k j

jk j
k j

X w U    

 

  .     (4) 

Преодоление априорной неопределенности пара-
метров помехи основывается на адаптивном байесов-
ском подходе, в соответствии с которым неизвестные 
величины jkW  в алгоритме (3) или jkw  и п  в алгорит-

ме (4) заменяются их состоятельными оценками ˆ
jkW  

или ˆ jkw  и п̂ ,  что приводит к адаптивному к парамет-
рам помехи алгоритму 

п̂ii i

1 1 1

ˆe e e ,
N N N

jk k
k jk j

k k j
X Y w U   

  

       (5) 

где с п
ˆ ,     п̂i

1

ˆ e
N

j
k jk j

j
Y w U



  – выходные отсчеты 

адаптивного матричного фильтра (АМФ). 
Для вычисления весовых коэффициентов АМФ в 

общем случае необходимо осуществлять обращение 
оценочного значения корреляционной матрицы помехи 

п
ˆ .R  Более просто непосредственно оценки элементов 

обратной матрицы ˆ
jkW  могут быть определены с помо-

щью рекуррентной процедуры. По элементам ˆ
jkW  те-

перь можно найти входящие в алгоритм (5) оценки 
ˆˆ | |jk jkw W  и п̂i

1, 1,
ˆ ˆe / | |j j j jW W

  . 

Для помехи, описываемой марковской последова-
тельностью, АМФ трансформируется в одноканальный 
адаптивный режекторный фильтр (АРФ), приводя к тра-
диционной квазиоптимальной структуре «режекторный 
фильтр – многоканальный фильтр» [14]. В случае про-
извольных корреляционных свойств помехи оптимиза-
ция АРФ осуществляется в соответствии с критериями и 
алгоритмами работ [5, 12]. 

Неопределенность величины с п
ˆ     в допле-

ровском интервале однозначности [ , ]   предполага-
ет N-канальное вычисление внешних сумм алгоритма 
(5), что может быть выполнено с помощью дискретного 
преобразования Фурье (ДПФ). 

Использование выходных отсчетов АМФ (или АРФ) 
позволяет избежать многоканальности путем адаптации 
к параметрам сигнала. В результате матричной обра-
ботки помеха достаточно эффективно подавляется, что 

открывает возможности для адаптации к доплеровской 
фазе сигнала. 

Оценивание доплеровской фазы сигнала 

Для реализации адаптивного накопления сигнала, 
упрощающего построение системы обнаружения, необ-
ходимо оценить доплеровский сдвиг фазы .  Традици-
онно для этой цели используется метод максимального 
правдоподобия [15, 16]. В связи с тем, что оценку мак-
симального правдоподобия величины   по выходным 
отсчетам АМФ в явном виде получить не удается, иско-
мый алгоритм найдем эвристическим путем. 

Представляя выражение для оптимальной решаю-
щей статистики через выходные отсчеты kY  матричного 
фильтра, находим 

2
2 i i ( )

1 , 1
( ) | ( ) | e e .

N N
k j k

k j k
k j k

u X Y Y Y     

 

       (6) 

Ядром квадратичной формы (6) является N-мерная 

матрица i ( )|| ( ,  )|| || e || .j kD j k   Выделяя сомножители с 

параметром ,  разложим матрицу || ( ,  )||D j k  в степен-
ной ряд 

1
i i

, 1 1,  
1

|| ( ,  )|| || || (e || || e || || ).
N

n n n n
jk j k j k

n
D j k    




 


    

Ограничиваясь в данном разложении членами при 
1,n   приходим к ленточно-диагональной матрице 

i i
, 1 1, || ( ,  )|| || e e || .jk j k j kD j k    

     

Выражение для выходной статистики (6) теперь при-
нимает упрощенный вид 

i i
1 1

1 2
( ) (e e ).

N N

j j j j j j
j j

u Y Y Y Y Y Y     
 

 

       (7) 

Алгоритм одноканального измерения доплеровской 
фазы   найдем из условия максимума статистики (7). 
Решая уравнение 

ˆ( ) / 0,u
 

 


    

получаем квазиоптимальный алгоритм оценивания до-
плеровской фазы: 
ˆ arg arctg(Im / Re ),A A A      (8) 

где 1
2

.
N

j j
j

A Y Y




  

Значения арктангенса находятся в пределах 
[ / 2, / 2].   Расширение диапазона однозначного из-

мерения   до интервала [ , ]   осуществляется на 
основе логических операций: 

arg                              при  Re 0,
ˆ (sgn Im )( | arg |)  при Re 0, .

(sgn Im ) / 2              при Re 0.

A A
A A A
A A

 


 
    
  

    (9) 

Измерение оценки ̂  включает попарное комплексное 
перемножение выходных отсчетов АМФ ,kY  комплексное 
суммирование получаемых произведений, а также арктан-
генсное функциональное преобразование и логические 
операции в соответствии с алгоритмами (8) и (9). 

Рассмотрим точность оценивания, характеризуемую 

математическим ожиданием оценки ̂  и ее дисперсией 
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2 2
ˆ

ˆ ˆ( ) .


     В связи с тем, что алгоритм оценивания 

  синтезирован на основе упрощенной статистики (7), а 
фазовые сдвиги на выходах АМФ различны, математи-

ческое ожидание ̂  оказывается смещенным. Опреде-

ляя ̂  как реакцию измерителя на детерминированное 

входное воздействие i{ } {e }j
jU   ( 1, )j N  при фик-

сированной настройке АМФ на задаваемые параметры 
помехи, найдем смещение 

1
2

ˆ arg
N

j j
j

Y Y   




 
      

 
  

i( )
1, 

2 , 1
arg e .

N N
k n

j k jn
j k n

w w   


 

 
  

 
   

Анализ данного соотношения показывает, что сме-
щение   связано с формой амплитудно-частотной 
характеристики (АЧХ) АМФ. В полосе пропускания АЧХ 
смещение отсутствует, а в полосе непропускания вели-
чина 0   и зависит от «глубины» затухания АЧХ в 
этой окрестности, определяемой формой спектра поме-
хи и отношением шум/помеха .  

Результаты статистического моделирования на 
ПЭВМ показывают, что при малых отношениях сиг-

нал/помеха q  математические ожидание оценки ̂  
группируется в окрестности ,  а с увеличением q  схо-
дится к истинному значению параметра с точностью до 
величины .  Кроме того, точность оценивания зави-
сит от величины .  Наилучшая точность имеет место 
при ,   а оценка оказывается несмещенной во всем 
диапазоне .q  В целом асимптотические свойства оцен-

ки ̂  являются приемлемыми с точки зрения их исполь-
зования при адаптивном накоплении сигнала. 

Синтез системы адаптивного обнаружения сигнала 

Использование оценки ̂  позволяет первоначально 
отказаться от многоканального по доплеровской фазе 
сигнала построения системы обнаружения в интервале 
неопределенности [ , ]   величины   и перейти к 
одноканальному построению системы с адаптивным 
накоплением сигнала, структура которой аналогично (5) 
определяется алгоритмом 

п̂
ˆ ˆ ii i

1 1 1

ˆ ˆ( ) e e e .
N N N

jk k
k jk j

k k j
X Y w U   

  

     

Данный алгоритм сочетает адаптацию к параметрам 
помехи и к доплеровской фазе сигнала. Однако погреш-
ности оценивания   при одноканальном построении 
системы приводят к потерям в эффективности обнару-
жения. Для уменьшения этих потерь используем не-
сколько каналов согласованной обработки, перекрыва-
ющих диапазон разброса значений оценки ̂  и описы-

ваемых векторами 1 ˆˆ{ } {exp[ i( 1)( )]},k
pV k p       

1, ,k N  , .p P P   

Выбор расстройки   и числа каналов 2 1M P   
определяется требованиями к допустимой величине 

потерь в эффективности обнаружения. 
Алгоритм обработки для p-го канала имеет вид 

1

1

ˆ ˆ( ) ,
N

k
p p k

k
X V Y 



   (10) 

где , ,p P P   ˆˆ exp[ i( )].pV p     

Структурная схема системы адаптивного обнаружения 
сигнала представлена на рис. 1. Адаптация к параметрам 
помехи осуществляется в АМФ, по выходным отсчетам 

kY  которого в соответствии с алгоритмом (8) и логиче-
скими операциями (9) в измерителе доплеровской фазы 

(ИДФ) вычисляется оценка ˆ,  поступающая в косинусно-
синусный многоканальный функциональный преобразо-

ватель (МФП). По величинам ˆ p   ( , )p P P   в МФП 
определяются векторы 

1 ˆˆ{ } {exp[ i( 1)( )]}( , ),k
pV k p p P P         

проекции которых используются в адаптивном когерент-
ном накопителе (АКН) при весовом суммировании вы-
ходных отсчетов kY  матричного фильтра в соответствии 
с алгоритмом (10). Обнаружение сигнала осуществляет-
ся по результатам последующего сравнения величин 

2| |pX  или | |pX  с соответствующими пороговыми уров-
нями обнаружения. 

 
Рис. 1. Структурная схема системы  
адаптивного обнаружения сигнала 

Анализ системы адаптивного обнаружения сигнала 

Рассмотрим выбор числа каналов 2 1M P   и их 
расстройки .  На рис. 2 изображены полученные моде-
лированием на ПЭВМ для системы адаптивного обнару-
жения (см. рис. 1) с числом доплеровских каналов 

5M   зависимости потерь в пороговом отношении сиг-
нал/помеха q  от величины нормированной расстройки 

/   (где 2 / N    – расстройка каналов ДПФ) 

при числе обрабатываемых отсчетов 20,N   вероятно-
сти правильного обнаружения 0,7,D   вероятности 

ложной тревоги 210 ,F   гауссовской функции корре-

ляции помехи 
2( ) ,j k

jk    0,99   и 410 .   

Как видим, существует оптимальная величина рас-
стройки ,  примерно соответствующая расстройке ка-
налов ДПФ .  Однако основным фактором, позволя-
ющим обеспечить заданную величину потерь, является 
число каналов. Соответствующие зависимости от числа 
каналов при оптимальной величине расстройки   при-
ведены на рис. 3. Из рисунка следует, что при допусти-
мом уровне потерь до 2 дБ число доплеровских каналов 
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может быть сокращено в четыре раза. С другой сторо-
ны, при числе каналов M N  за счет сокращения рас-
стройки до величины (0,3...0,5)    потери на гра-
ницах доплеровских каналов практически исключаются, 
а эффективность обработки приближается к предель-
ной, соответствующей сигналу с известной доплеров-
ской фазой. 

 
Рис. 2. Зависимости потерь в пороговом отношении  

сигнал/помеха от расстройки каналов 

 
Рис. 3. Зависимости потерь в пороговом отношении  
сигнал/помеха при оптимальной расстройке каналов 

Аналогичные результаты имеют место для квази-
оптимальной системы на основе АРФ и адаптивного 
когерентного накопителя. При этом в отличие от 
свойств оценок ̂  в оптимальной системе при оценива-
нии фазы сигнала по выходным отсчетам АРФ смеще-
ние оценки   отсутствует, а среднеквадратичное от-
клонение ̂

  несколько возрастает. 

В целом результаты моделирования подтверждают 
достоверность синтезированных алгоритмов обнаруже-
ния и предложенных принципов построения соответ-
ствующих систем адаптивного обнаружения сигналов. 

Заключение 

Синтезированные алгоритмы оптимального обнару-
жения радиолокационных сигналов на фоне пассивных 
помех с неизвестными параметрами предполагают их 
реализацию на основе адаптивного матричного фильтра 
и неадаптивного многоканального фильтра, осуществля-
ющего дискретное преобразование Фурье результатов 
матричной обработки. Адаптация матричного фильтра 
позволяет преодолеть проблему априорной неопреде-
ленности корреляционных характеристик помехи. 

Синтезированный квазиоптимальный алгоритм оце-
нивания доплеровской фазы сигнала по выходным от

счетам АМФ или АРФ позволяет получать оценки, ис-
следование свойств которых показало возможность их 
использования в системах обнаружения с адаптивным 
накоплением сигнала, позволяющим сократить число 
доплеровских каналов или при прежнем числе допле-
ровских каналов расстройки между каналами, исключив 
межканальные потери. 
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Сегодня активные антенные решетки находят все большее при-
менение в задачах беспроводной связи. Системы связи становятся 
высокоизбирательными по пространству, что делает их чувстви-
тельными к ошибкам в оценках канала.  В работе рассматриваются 
основные проблемы MIMO систем, в которых нет возможности оце-
нить канал прямыми методами по пилотным сигналам. Неявные ме-
тоды оценки требуют сжатого представления канальной информа-
ции, что накладывает ограничения на их точность. Предлагается 
метод итеративного восстановления канальной информации из 
сжатого представления, который обладает повышенной точностью 
восполнения канальной информации и эффектом сглаживания воз-
можных ошибок в поступившей информации. 

УДК 621.396.4 

МЕТОД ДИФФЕРЕНЦИАЛЬНО-ОРТОГОНАЛЬНОГО ПОИСКА  
В ЗАДАЧЕ ОЦЕНКИ MIMO КАНАЛА 

Ляшев В.А., к.т.н., доцент кафедры мультимедийных технологий и телекоммуникаций, Московский физико-
технический институт (национальный исследовательский университет), e-mail: lyashev.va@mipt.ru 

A METHOD OF DIFFERENTIAL ORTHOGONAL MATCHING PURSUIT FOR MIMO 
CHANNEL ESTIMATION 

Lyashev V.A. 
Today, active antenna arrays are increasingly being used in wireless communication. The systems become highly selective in 
space, which makes them sensitive to errors in channel estimations.  The paper considers the main problems of MIMO systems in 
which it is not possible to evaluate the channel using direct methods based on pilot signals. Implicit estimation methods require a 
compressed representation of channel state information, which imposes limitations on their accuracy. A method of iterative recovery 
of channel information from a compressed representation is proposed, which has an improved efficiency of channel matrix acquisi-
tion and the effect of error smoothing. 

Key words: MIMO-OFDM, vector quantization, channel estimation, spatial multiplexing. 

 
Ключевые слова: MIMO-OFDM, векторное 

квантование, оценка канала, пространственное 
мультиплексирование, сжатые измерения, диф-
ференциальный метод. 

Введение 

Современные сети подвижной связи требу-
ют эффективных алгоритмов обработки сигна-
лов как в восходящем канале (uplink, UL), так и 
в нисходящем канале (downlink, DL). Для одно-
временной работы этих каналов применяются 
различные методы множественного доступа, 
включая систему множественного доступа с 
частотным разделением каналов (FDMA) [1], 
которая позволяет мультиплексировать данные    
пользователей по разным частотным ресурсам. 

Для поддержания связи в UL и DL также использу-
ются дуплекс с временным разделением (TDD) и дуп-
лекс с частотным разделением (FDD) [1]. Последний 
обеспечивает полудуплексную и полнодуплексную пе-
редачу данных. Полнодуплексный режим позволяет 
одновременно передавать и принимать данные на раз-
ных частотах ULf  и ,DLf  что делает его предпочтитель-
ным вариантом и как следствие – самым распростра-
нённым на сегодня. 

Чтобы обеспечить эффективность систем с высоким 
коэффициентом разнесения несущих частот восходя-
щего и нисходящего каналов, базовые станции (БС) 
должны получать информацию о состоянии нисходяще-
го канала от мобильных станций (МС). Для этого БС 
передают опорные символы (пилоты), которые исполь-
зуются МС для измерений. Полученная оценка канала 
затем передается обратно на БС с помощью отчетов о 
состоянии канала (channel state information, CSI) – такой 
процесс называют обратной связью в оценке канала 
(ОС-CSI).  

Сжатие CSI перед отправкой на БС позволяет 
уменьшить объем служебной информации, необходи-

мой для передачи состояния канала, при сохранении 
достаточной точности для управления системой. Этот 
процесс включает в себя преобразование непрерывных 
значений CSI в дискретные уровни в многомерном про-
странстве малого ранга, что позволяет сократить коли-
чество бит, необходимых для их представления. Данная 
информация является служебной и обеспечивает рабо-
тоспособность нисходящего канала, поэтому иногда 
объем служебной информации относят к накладным 
расходам информационной емкости восходящего канала 
(накладные расходы алгоритма) и называют отчетами о 
состоянии канала. 

Обширный обзор в [2] показывает разнообразие ме-
тодов, учитывающих ограниченный канал ОС-CSI. В каче-
стве одного из решений предлагается сопоставлять со-
стояния канала DL с кодовыми словами из словаря из-
вестного как БС, так и МС. Точность и размер CSI будет 
определяться размером словаря и методом поиска кодо-
вого слова, наилучшим образом согласованного с теку-
щим состоянием канала. В данной работе предлагается 
рассмотреть итеративный метод подбора кодовых слов, 
которые эффективно и компактно представят информа-
цию о канале для последующей передачи ее на БС. 
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Качество оценки канала влияет на точность про-
странственных фильтров, которые применяются для 
пространственного мультиплексирования пользовате-
лей. Стандарт поддерживает пространственное мульти-
плексирование до 12 МС, и каждая МС обслуживается 
несколькими потоками данных. Для словаря второго 
типа [3] средняя суммарная пропускная способность 
одной ячейки показана на рис. 1. Одинаковый тип линий 
соответствует одной детализации отчетов CSI в частот-
ной области (пунктирная линий: одна оценка канала на 
полосу 720 кГц; сплошная линия – одна оценка канала 
на полосу 1.44 МГц). Линии с круглыми маркерами обо-
значают не квантованные CSI, а линии с треугольными 
маркерами – квантованные CSI. Рис. 1 позволяет оце-
нить влияние квантования с использованием кодовых 
книг на производительность системы. 

 
Рис. 1. Несжатый CSI (●) и CSI на основе словаря типа II (▲) 

Видно, что сплошные кривые имеют экстремум, ко-
торый объясняется тем, что недостаточно точное опи-
сание канальной информации посредством словарей  
из стандарта приводит к взаимной интерференции меж-
ду мультиплексированными пользователями, суммар-
ный уровень которой начинает доминировать начиная  
с 5-6 мультиплексированных МС. В то же время, полная 
информация о канале позволяет и далее наращивать 
производительность системы, пропускная способность 
которой будет ограничиваться лишь доступной мощно-
стью передатчика, наличием МС для мультиплексиро-
вания и вычислительными возможностями БС. Данные 
характеристики можно рассматривать как верхнюю гра-
ницу, которая обеспечивает максимально достижимую 
производительность MU-MIMO системы. 

Сегодня 3GPP стандарт поддерживает 12 МС, но 
при этом словари второго типа из 16 и 18 версий стан-
дарта работают в 2-3 раза хуже, чем предполагает 
верхняя граница (пунктирный график на рис. 1), что ука-
зывает на потребность дальнейшего улучшения мето-
дов представления и сжатия пространственно-времен-
ных оценок каналов MIMO-систем. 

В работе предлагается улучшенная конструкция 
словаря, которая позволяет сократить разрыв между 
верхней границей и рассматриваемым решением. 

Постановка задачи 
Конструкции кодовых книг оптимальны только для 

определенной конфигурации системы. В литературе 
большинство словарей разработаны для систем с не-

сколькими входами и одним выходом (multiple input – 
single output, MISO). Пусть антенная система БС состоит 
из TXN  элементов, а МС из 1.RXN   Ограничение на 
одну приемную антенну подразумевает один простран-
ственный канал r = 1. Для простоты предлагается рас-
сматривать аналогичный случай. Обобщение получен-
ных результатов на 1r   будет сделано в последующих 
работах. 

Для MISO систем принятый сигнал ( )y t   в момент 
времени t  для каждой МС записывают следующим об-
разом [4] [5] 

( ) ( , ) ( ) ( )
( , , ) ( ) ( ) ( ),

H

H

y t t t d n t
h t x t d d n t

  

  

    

  

h x
b g b b∬

 (1) 

где H( )  – самосопряженный оператор. Вектор канала 
TXNh   представляет собой произведение коэффици-

ентов передаточной характеристики канала ( , , )h t  b   
в каждый момент времени t  и для каждой задержки τ 
импульсной характеристики канала с диаграммой 
направленности антенной системы .( ) TXNg b   Пере-
дающая антенна БС может быть описана набором пара-
метров ,b   который определен на многообразии 

{ ( ),  }.  g b b   Из-за многолучевого распростране-

ния сигнала ( ) TXNt x   в среде, МС всегда наблюдает 
сдвинутые копии сигнала на задержку .  Более того, 
передаваемый сигнал представляет собой многомерный 
пространственный сигнал, порожденный пространствен-
ным фильтром TXNp   и комплексным квадратурным 

сигналом ( )s t  

( ) ( ) ( ).t t s tx p  (2) 

Квадратурный сигнал ( )s t  характеризуется средней 

мощностью 2(| ( ) | ),SP s t   здесь ( )  – оператор оцен-
ки математического ожидания случайного процесса. 
Шум 2( ) (0, )nn t   – комплексный нормальный слу-
чайный процесс с нулевым математическим ожиданием 
и дисперсией 2 .n  Выражение (1) сформулировано во 
временной области и не зависит от вида сигнала. Одна-
ко, в данной работе будет рассматриваться система 
связи с ортогональным частотным мультиплексировани-
ем (orthogonal frequency division multiplexing, OFDM), что 
наиболее характерно для современных систем беспро-
водной связи [1]. 

Отчеты информации о канале представляют собой ко-
довые слова, которые более всего схожи с измеренным 
нисходящим каналом на МС. На основе таких отчетов, БС 
восстанавливает информацию о канале и формирует 
пространственный согласованный фильтр p  (ПСФ). Зная 
точно матрицу пространственной корреляции канала, 
можно получить оптимальный вектор p  через разложе-
ние матрицы на сингулярные числа и вектора [6]. Тогда 
первые значимые сингулярные вектора будут обеспечи-
вать оптимальную пространственную фильтрацию. 

Пусть словарь кодовых слов   

2(  : 1,  0 1),   ,TXN
j j jj     c c c    
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будем использовать N  вместо RXN  для простоты, под-

разумевая 1.RXN   

Размер словаря определяется количеством кодовых 
слов и обозначается .  Очевидно, что, зная словарь, 

достаточно сообщить номер кодового слова, тогда мож-
но определить количество бит ,B  которые необходимо 

использовать для информирования БС: .2B  

Задача МС заключается в быстром выборе наилуч-
шего кодового слова из словаря, которое обеспечивает 
наименьшие потери от такого способа представления 
канала. Для системной модели (1) можно записать от-
ношение сигнал/шум [7] 

2

2 .HS

n

P



 h p  (3) 

МС в состоянии оценить   и решить задачу поиска 

оптимального вектора optp p  

2
2

2
2

arg max arg max ,
H

H
opt  

 
p p

h p
p h p

h 
 (4) 

где hത = h
‖h‖ଶ

ൗ  нормированный вектор канала. В этом 

случае, МС определит вектор 

20  1
min ,opt jj   

 c c h


 

который будет передан на БС. В данной статье предло-
жен иной подход к построению таких словарей. 

Структурированные словари 

По сравнению с неструктурированными словарями, 
в этом разделе описывается категория структурирован-
ных словарей. Это означает, что кодовые слова имеют 
специальное правило построения. Здесь вводятся две 
подкатегории: 

Первая подкатегория по-прежнему включает в себя 
вероятностные методы для получения словарей, такие 
как ДПФ-словари, которые широко используются на 
практике, начиная с 3GPP стандарта десятой версии. 

Во второй подкатегории правила построения слова-
рей основываются на структурированности матриц ка-
нала и принципах линейной алгебры только. Этой кате-
гории и будет уделено основное внимание в данном 
разделе. 

Сформулируем задачу разреженных измерений в 
каноническом виде. Пусть необходимо восстановить 
разреженный вектор x  заданной длины   из вектора 

измерений ,y  используя матрицу-словарь NC    
  .Cx y  (5) 
Здесь количество измерений в y  намного меньше, 

чем длина разреженного вектора .x  Ограничение зада-
чи на поиск 1-мерного разреженного x  для приближе-
ния к y  эквивалентно поиску наилучшего столбца мат-
рицы-словаря ,c  т.е. наилучшего кодового слова, опи-
сывающего .y  Эту проблему представления часто 
называют разреженным измерением или разреженным 
кодированием. Такие подходы имеют границу сверху, 

которая определяется условием Уэлча-Рэнкина. Для 
комплекснозначных словарей справедлива граница ([8], 
теорема 5.10). 

2.N  (6) 

Для представления вектора измерений y в виде раз-
реженного вектора с незначительными искажениями, 
грубая оценка (6) неприменима. Используя границы Уэл-
ча-Рэнкина ([8], стр. 114), можно записать ее через ми-
нимальное расстояние mind  между кодовыми словами в 
матрице-словаре: 

  10 1 .
1mind

N
  


  (7) 

Известно, что для определенных измерений в неко-
торых словарях достигается именно эта граница. Здесь 
основное внимание уделяется мягкой оценке сверху, 
которая достигается в кодовых книгах Аллтопа. Так, для 
простых чисел 5,N   последовательности Аллтопа [9] 
достигают мягкой оценки сверху ([8], стр. 121). 

  11 .Alltop
min mind d

N
    (8) 

Предположим, что матрица-словарь 
2N NC   мо-

жет быть разделена на N  блоков размера N N  
(0) (1) ( 1)( ).N C C C C  (9) 

Тогда блоки ( )kC  1, 2, , 1k N    можно сформиро-
вать посредством матрицы сдвига kD  и матрицей моду-

ляции NG  [10] размерностей ( ): ,k
k NN N C D G  где 

последовательность Аллтопа [9]   32 / ,1 j q Nf q e
N

  

0,1, , 1q N    может быть сдвинута на k  отсчетов в 

матрице сдвига 1 0 1diag{ , , , , , },k k N kf f f f   D  а мат-

рица модуляции ( ) 1 2 /
, 0 .( ) ,   pq N j N

N N p qg g e 
 G  

Соответствующая структура кодовой книги Аллтопа 
представлена на рис. 2, где показана матрица Грамма. 
Главная диагональ, выделенная желтым цветом, соот-
ветствует автокорреляции кодового слова. Блочная 
структура словаря Аллтопа хорошо видна. Кодовые сло-
ва в блоке ( )kC  не имеют корреляции друг с другом, т.е. 
они ортогональны. Корреляции между кодовыми слова-

ми блока ( )kC  и другими блоками   , l l kC  имеют по-

стоянное значение 1/ .N  
На рис. 3 показано минимальное расстояние, доступ-

ное для кодовых книг Аллтопа. Хотя, граница Уэлча-
Рэнкина не достигается с помощью этой конструкции, но 
приведенная выше мягкая оценка границы Аллтопа (8) 
полностью достижима (Alltop bound). 

Нужно заметить, что для реализации книг Аллтопа 
необходимый размер словаря квадратично зависит от 
размерности измеряемого пространства 2.N  

Таким образом, в кодовых книгах Аллтопа кодовые 
слова формируются на основе последовательностей с 
определенными корреляционными свойствами и не учи-
тывают особенности распределений измеряемых вели-
чин. Они не привязаны к критерию Уэлча-Рэнкина, но 
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конструкции близки к этому критерию. Количество эле-
ментов велико из-за правил построения, что подразу-
мевает более высокие накладные расходы на обратную 
связь, но при этом обеспечивают небольшие ошибки 
аппроксимации. В целом, такие словари могут рассмат-
риваться как достижимая граница по точности пред-
ставления канальной информации. Любые последую-
щие подходы – это попытки снизить накладные расходы 
в петле обратной связи ОС-CSI. 

 
Рис. 2. Структура кодовой книги Аллтопа 

 
Рис. 3.  Минимальное расстояние между кодовыми словами  

в словаре Аллтопа 

Итеративные словари 

Итеративные словари основываются на грассмано-
вом многообразии. Чтобы продолжить введение грас-
сманова многообразия, удобно кратко изложить реше-
ние задачи нахождения оптимального вектора про-
странственного фильтра относительно максимального 
SNR, которое задается формулой (4). В задаче рас-
сматриваются решения, которые приводят к максимуму 
в смысле абсолютных значений. В результате вектор p
из (4) не является уникальным, поскольку любой повер-
нутый вектор  , 0  2je   p  также находится в набо-

ре решений. Все векторы в этом наборе имеют одну и 
ту же линию в .N  Комплексное многообразие Грас-

смана ( , )dG K   описывает множество K -мерных под-

пространств  .d  Установив  1 K   и   ,d N  многообразие 

Грассмана (1, )NG   представляет собой набор всех од-
номерных подпространств (линий), проходящих через 
начало координат, и может быть использовано для мате-
матического описания оптимального набора векторов .p  

Словари должны охватывать большинство наборов 
решений, которые могут возникнуть. Однако ограниче-
ние накладных расходов на обратную связь ограничива-
ет размер словаря .  Чтобы эффективно охватить все 
наборы и ограничить потери при квантовании, необхо-
димо задачу свести к поиску линий из (1, )NG   распо-
ложенных на максимальном расстоянии друг от друга. В 
литературе такую задачу называют проблемой упаковки 
грассмановых линий или задачей плотной упаковки. Для 
измерения расстояния между линиями на многообразии 
Грассмана, чаще всего применяют сферическую метрику 

2 2
1( ) sin sin ,d

ch Kd     

которую обычно называют хордальным расстоянием. В 
условиях применения теории к задаче измерения точно-
сти представления канала векторами кодовой книги 

( , ) (1, )d NG K G   сферическая метрика вырождает-
ся в 

( ) sin .N
ch chd d    (10) 

и принимает значения в пределах [0,1]. Угол между дву-
мя грассмановыми линиями обозначается как .  В тер-
минах линейной алгебры можно определить линию как 
множество точек, которые принадлежат комплексной N-

мерной гиперплоскости (алгебраическая кривая в ).N  
Тогда метрика (10) есть угол между двумя гиперплоско-
стями в пространстве N . 

Алгоритмической основой таких подходов является 
алгоритм жадного ортогонального поиска (Orthogonal 
Matching Pursuit, OMP) [11], хорошо известный в области 
разреженных измерений/аппроксимаций, который пред-
ставляет собой алгоритм, определяющий собственные 
векторы путем итеративных приближений.  

Ранее, словарь Аллтопа был представлен в контек-
сте разреженных измерений. Рассмотрим алгоритм OMP 
- это итеративный алгоритм, который использует одно 
кодовое слово за один итерационный шаг 1, 2, , .k K   

После выполнения максимум k K  шагов найдено K  
кодовых слов, которые складываются в новую матрицу 

кодовой книги    1 .k N k C   Индексы 1 2 1, , , kj j j    

{1,2,3 ,| |}    соответствуют выбранным колонкам в 

исходной измерительной матрице c  такие, что  k C

1 2 1
( ).

kj j j 
 c c c  Набор индексов обозначает из-

меряемые элементы разреженного вектора ,x  и от ите-
рации к итерации таких элементов в векторе x  будет 
становиться все больше и больше. Таким образом, ал-
горитмы, в основе которых лежит метод OMP, должны 
передать K  индексов соответствующих столбцов мат-
рицы C для восстановления вектора .x  Для стационар-
ного канала это относительно приемлемое решение. 
Однако в динамике оно становится непригодным, так как 
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итерации распределены во времени, а также данный 
метод работает эффективно для первого сингулярного 
вектора канальной матрицы, но малоприменим для век-
торов более высоких порядков. 

Рассмотрим дифференциальный подход, который 
позволяет получать дополнительные обновления CSI 
для .K N  Вместо инициализации вычислений OMP 
случайным вектором x  – инициализируем его вектором 
невязки. 

Вектор невязки – это разница между текущим соб-
ственным вектором 1( )stv  и результатом K  OMP ите-

раций, в которых найдены кодовые слова 1( )st C  и ко-

эффициенты 1( )st x  

1 1 1((( ) ) .) ( )s s s st t t t  r v C x  (11) 

Первоначально невязка определяется только соб-
ственным вектором. На каждом шаге квантуется только 
неизвестное. По сравнению с традиционным OMP, 
дифференциальный метод обеспечивает повышенную 
гибкость, поскольку качество обратной связи может ре-
гулироваться параметрами K  и .t  Таким образом, 
можно выбрать между несколькими кодовыми словами 
и постоянным размером накладных расходов в петле 
обратной связи. Поскольку параметр K  может быть 
меньше, чем ,N  дифференциальный подход суще-
ственно экономит накладные расходы. Принцип инте-
грации алгоритма в систему связи схемотично изобра-
жен на рис. 4.  

Кратко, алгоритм можно описать следующим обра-
зом (см. алгоритм 1). 

 
Рис. 4. Принцип применения дифференциального алгоритма 

ортогонального жадного перебора (ДАП) 

Здесь ( )kS  – подмножество доступных для выбора 

колонок в измерительной матрице   .kC  
При каждом вызове OMP на шаге 3 будут выбираться 

кодовые слова из полного набора кодовой книги, т.е. нет 
ограничений на базисные вектора словаря с течением 
времени. Следовательно, векторы ошибок e в OMP орто-
гональны, а вектор невязки 0.r  БС суммирует отчеты 
по формуле 1 ( ) ( ),s st tv C x  чтобы каждый отчет улуч-
шал оценку. Кроме того, можно установить критерий 
остановки, чтобы не нужно было отправлять коэффици-
енты на БС, если вектор невязки достиг малых значений, 
например .|| || nr  

Алгоритм 1 – дифференциальный алгоритм ортогонального жадного перебора (ДАП). 

1 Инициализация: 0s   

2 Вычислить вектор невязки между текущим собственным вектором и результатом 
OMP на предыдущем временном шаге. 

1 1 1( ) ( ) ( ) ( )s s s st t t t   r v C x  
Замечание: 

0 1 0 )( ) .(t tr v  
3 Выполнить ܭ итераций OMP алгоритма 
a) (0) (0) (0)0, 0, 0, ( ).sk S t   x e r  
b) Выбрать кодовое слово согласно условию 

 

 
1

1arg max
kk

k

kH
k j

j S
j






 c e  

c) Обновить матрицу    1( )
k

k k
j

 C C c  
( ) ( 1) { }k k

kS S j   
d) Обновить оценку вектора  kx  путем решения задачи наименьших квадратов 

  2
2arg min ( )

k

k
sr t


  

z
x C z  

e)  
 

kS
kx x  

f) Обновить вектор невязки 
( ) ( )( )k k

st e r Cx  
g) 1k k   и перейти к шагу b) пока k K  
4 Передать на БС индексы кодовых слов из ( )stC  и коэффициенты вектора ( )stx  
5 Перейти к следующему временному шагу 

1s s   и вернуться на шаг 2. 
Ниже представлены различные результаты тестиро- вания ДАП. На рис. 5 показана нормированная корреля-
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ция алгоритма ДАП с кодовой книгой Аллтопа для раз-
ных значений K  с течением времени. Графики на рис. 
5 и рис. 6 относятся к одним условиям моделирования и 
отличаются только рассматриваемым периодом време-
ни. Цель состоит в том, чтобы достичь значения корре-
ляции, равного единице за минимальное число итера-
ций. Из рисунка видно, что значение K  влияет на 
наклон кривой. Таким образом, для больших значений

,K  т.е. для большего количества кодовых слов, пере-
даваемых на БС за один раз, требуется меньше итера-
ций, а для меньших значений требуется больше итера-
ций. При 1,K   т.е. при каждом сообщении передается 
одно кодовое слово, усредненная корреляция мень-
ше 1. Это означает, что изменения в собственном век-
торе приводят к большим ошибкам, которые невозмож-
но квантовать с помощью одной итерации OMP. 

На рис. 7 показана корреляция во времени для раз-
личных значений скорости, где 1K   для левого рисун-
ка и 4K   для правого. При 1K   более высокие ско-
рости приводят к снижению производительности. Соот-
ветственно, ДАП с 1K   применим только для каналов 
с очень медленным затуханием. В противном случае 
интервалы обратной связи следует выбирать короче, 
что не всегда возможно. Напротив, при более высоких 

значениях ,K  таких как 4,K   как показано на рис. 7, б, 
можно полностью компенсировать снижение скорости. 

В заключение, параметр K  следует скорректировать 
в соответствии со сценарием, при этом для обеспечения 
высокой мобильности требуются более высокие значе-
ния, в то время как для сценариев с низкой мобильно-
стью достаточно меньших значений. 

Далее исследуется эффективность обратной связи 
ДАП и поведение при различных конструкциях кодовых 
книг, что показано на рис. 8. Рассмотрены следующие 
конструкции кодовых книг: случайное векторное кванто-
вание (RVQ), ДПФ словарь из 5G стандарта (NR-DFT), а 
также словарь Аллтопа. На рис. 8, a показана нормиро-
ванная корреляция для 1K   и скорости 10 км/ч. В 
среднем влияние кодовых книг на корреляцию невелико, 
хотя у словарей Аллтопа есть небольшое преимуще-
ство. Напротив, максимальное и минимальное значения 
различаются значительно. Причиной этого является со-
ответствующее минимальное расстояние между кодо-
выми словами mind  для различных конструкций кодовых 

книг. Это значение min 0,95d   для кодовой книги Аллто-

па, min 0,7d    для  RVQ  и  min 0,16d    для NR-DFT,  
который  используется  в  3GPP NR  версии 16.  Кодовые 

  
Рис. 5. Сходимость алгоритма ДАП 

для разных K, начальный участок времени 
Рис. 6. Сходимость алгоритма ДАП 

для разных K 

 
 a) 1K    б) 4K   

Рис. 7. Нормированная корреляция во времени с использованием алгоритма ДАП и кодовой книги Alltop  
для различных значений скорости. Сплошными линиями обозначено усредненное значение по 30 реализациям 
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 a) 1K    б) 2K   

Рис. 8. Нормированная корреляция во времени с использованием алгоритма ДАП для различных словарей  
и различных значений ܭ. Сплошные линии обозначают среднее значение по 30 реализациям 

 
 a) скорость МС 3 км/ч б) скорость МС 10 км/ч 

Рис. 9. Нормализованная корреляция во времени с использованием алгоритма MP и кодовой книги Аллтопа.  
Сплошными линиями обозначено среднее значение за 30 реализаций 

слова NR-DFT неравномерно распределены по единич-
ной сфере и имеют наименьшее минимальное расстоя-
ние между кодовыми словами. Следовательно, некото-
рые реализации соответствуют друг другу очень хорошо 
и достигают высокой корреляции, в то время как для 
других это не так. 

Вычислительный эксперимент  
и сравнительный анализ 

Ниже представлены различные результаты по ранее 
представленным алгоритмам. За основу будут взяты 
два алгоритма: алгоритм жадного поиска и ДАП. В осно-
ве каждого алгоритма лежат итерации OMP, которые 
были рассмотрены ранее в статье. Алгоритм жадного 
поиска (Matching Pursuit, MP) известен с 1970-х годов. 
Одна из первых работ по обработке сигналов с исполь-
зованием MP алгоритма [12] использует словарь Габбо-
ровских функций. В данной статье используется сло-
варь Аллтопа (Alltop) и словарь ДПФ высокого разреше-
ния (O-DFT) для сравнения результатов.  

Необходимо проанализировать устойчивость алго-
ритмов к периоду измерений. На всех графиках выше 
предполагалось, что оценка и квантование канала вы-

полняются каждую миллисекунду. На самом деле в про-
токоле физического уровня есть ограничения на переда-
чу канальной информации в канале обратной связи. 
Графики на рис. 9 показывают, как продолжительность 
отчетных интервалов CSIT  влияет на корреляцию во 
времени для различных скоростей {3, 10} км/ч и отчет-
ных интервалов 1,  2,4  мс.{ }CSIT   1CSIT   мс показыва-
ет пилообразное поведение нормированной корреляции 
на всех скоростях. Это происходит из-за смещения век-
торов канала, которое снижает корреляцию, когда ка-
нальная информация не передается (канал устаревает). 
Следовательно, следующая обратная связь должна 
компенсировать смещение в дополнение к остаточному 
квантованию. Соответственно, нормированная корреля-
ция для более длинных интервалов обратной связи ни-
же, чем для более коротких. Для 4,CSIT   значение кор-
реляции, равное единице, не может быть достигнуто. 
Таким образом, алгоритм обратной связи MP требует 
более коротких интервалов обратной связи. При более 
высоких скоростях дрейф векторов канала влияет на 
производительность, см. рис. 10, б. В результате MP не 
может компенсировать изменения канала, и набор ба 
зисных векторов словаря необходимо обновить. 
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 a) 1K    б) 3K   

Рис. 10. Нормализованная корреляция во времени с использованием алгоритма обратной связи ДАП и кодовой книги Аллтопа. 
Сплошными линиями обозначено среднее значение за 30 реализаций 

На рис. 10 показаны аналогичные результаты для 
ДАП алгоритма. Отдельные графики отличаются значе-
нием {1,3}.K   Как и в случае с MP, ДАП также демон-

стрирует пилообразное поведение при 1CSIT   мс. Од-
нако со временем производительность не снижается, 
поскольку базисные вектора словаря могут изменяться. 
Кроме того, можно видеть, что повторная передача не-
скольких кодовых слов на одной итерации может увели-
чивать или уменьшать значение корреляции. Представ-
ленные здесь результаты на скорости 10 км/ч позволя-
ют предположить, что для обеспечения мобильности 
необходим ДАП более высокого порядка 1.K   В даль-
нейшем эффективность алгоритмов обратной связи, 
основанная на величине корреляции, рассматриваться 
не будет. Для выбранных конфигураций будет выпол-
нено полноценное системное моделирование с пара-
метрами из табл. 1. 

Рассматривается пространственное мультиплекси-
рование 4 МС с 1 антенной, скорость движения 3 км/ч. 
На рис. 11, а, сравниваются характеристики метода об-
ратной связи 3GPP NR на основе O-DFT с алгоритмом 
ДАП в петле ОС-CSI, который также использует кодо-
вую книгу O-DFT. В каждом случае предположим, что 
размер кодовой книги равен  64.  Верхняя граница 
постоянна и составляет 225 Мбит/с. Метод ОС-CSI со-
гласно 3GPP NR версии 16 достигает скорости 
130 Мбит/с, которая практически не изменяется во вре-
мени. Если метод ОС-CSI основан на подходе ДАП, то 
производительность повышается до 175 Мбит/с после 
некоторого времени адаптации алгоритма. Кроме того, 
показаны кривые для 1K   и 4.K   Увеличение числа 
итераций OMP и, следовательно, количество кодовых 
слов и коэффициентов в одном отчете вряд ли улучшат 
производительность. Ключевым моментом для этого 
является не количество кодовых слов, а сжатие инфор-
мации в канале обратной связи, что показано на 
рис. 11, б. На рисунке представлены характеристики 
для неквантованных и квантованных ОС-CSI с исполь-
зованием ДАП. В первом случае используется среднее 
значение для двух поляризаций, чтобы найти кодовые 
слова, усредненные по полосе. Таким образом, коэф-
фициенты поддиапазона для этой средней поляризации 

вычисляются количественно, и в конечном итоге обратная 
связь используется для обеих поляризаций в БС. В дру-
гой реализации ДАП среднее значение двух поляризаций 
также используется для выбора кодовых слов, усреднен-
ных по полосе. Однако коэффициенты подполосы опре-
деляются отдельно для обеих поляризаций и квантуются 
аналогично NR. Хорошо видно, что квантование коэффи-
циентов приводит к значительным потерям. 

Таблица 1. Основные параметры модельного эксперимента 

Модель канала Quadriga 
Сценарий 3D-3GPP 38.901 Uma NLOS 

outdoor 
Несущая частота 1,85 ГГц 
Расстояние между под-
несущими частотами 

15 кГц 

Расстояние между БС 500 м 
Высота БС 25 м 
Конфигурация антенной 
системы БС 

16 колонок по 4 элемента в 
каждой колонке, 2 поляри-
зации на каждом элементе. 
Итого 128 элементов. 
Расстояние между элемен-
тами 
– по вертикали 0,9  
– по горизонтали 0,5  

Наклон антенной систе-
мы 

наклон панели 3° 
наклон диаграммы направ-
ленности с помощью фазо-
вращателей 7° 

Антенные порты 4 антенных элемента в од-
ной колонке объединены в 
один порт 

Минимальное расстоя-
ние БС-МС 

35 м 

Высота МС 1,5 м 
МС антенна  Всенаправленная 
МС скорость 3 – 10 км/ч 

CSIT  1 мс 

На рис. 12 показана пропускная способность секто- 
ра БС в зависимости от параметров конфигурации в  
момент  времени  t  = 2 мс   от   начала   моделирования 
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а) Сравнение 3GPP NR и ДАП подходов б) Сравнение ДАП с неквантованными коэффициентами  

для среднего значения поляризаций  
и с квантованными коэффициентами  

для каждой поляризации в отдельности 
Рис. 11. Пропускная способность БС при использовании ДАП алгоритма 

 
 a) 2t   мс б) 50t   мс 

Рис. 12. Сравнение накладных расходов на обратную связь между 3GPP NR и ДАП подходами 

 (рис. 12б а) и для t  = 50 мс на рис. 13, б. Здесь под 
верхней границей следует понимать максимальную ско-
рость, которая не зависит от накладных расходов (иде-
альный канал). 

В целом, можно видеть, что с помощью решения 
ДАП достигается значительное повышение эффектив-
ности в соотношении производительность-накладные 
расходы по сравнению с алгоритмом ОС-CSI, исполь-
зующимся в 3GPP NR стандарте. Соответственно, при 
заданном объеме доступных накладных расходов более 
высокая скорость может быть достигнута с помощью 
ДАП. Кроме того, для алгоритма обратной связи NR в 
оба момента времени увеличение L  приводит к срав-
нительно равному увеличению производительности. 
Конечно, для больших значений L  требуется больше 
бит. В случае ДАП это также относится к увеличению K. 
Однако увеличение K приводит к значительному увели-
чению производительности только при небольших зна-
чениях ,t  см. также рис. 11, a. Следовательно, на этапе 
запуска ДАП использует меньшее количество кодовых 
слов, что позволяет поддерживать высокую производи-
тельность и при этом значительно сокращать наклад-

ные расходы на пересылку информации о состоянии 
канала. 

Заключение 
В работе приводится модифицированный алгоритм 

квантования и обратной связи канальной информации. 
Предложенный алгоритм показал большую надежность 
и устойчивость к ошибкам в оценке канала, обеспечил 
прирост пропускной способности системы на 50 % по 
сравнению с методами, на которых основан стандарт 
3GPP. При этом накладные расходы на передачу ка-
нальной информации в восходящем канале сопостави-
мы с NR-DFT методом из 3GPP. 

Алгоритм ДАП показал возможность сглаженного 
решения в случае резких выбросов в оценках канала, 
таким образом он неявным образом обозначил лучшую 
устойчивость к такого рода возмущениям во входных 
данных. Имея предшествующее знание о канале, можно 
легко адаптировать алгоритм к динамическим каналам с 
допплеровскими замираниями сигнала, что позволит 
построить словарь, адаптированный к динамике в кана-
ле, и является предметом дальнейшего исследования. 
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