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Исследуется подход по моделированию и коррекции структурного 
шума («полосатости») на изображениях от систем космического 
наблюдения Земли путем построения дерева вейвлет-пакетного 
разложения и сверточных нейронных сетей. Рассмотрены особенно-
сти решения поставленной задачи при наличии на изображениях сма-
за и расфокусировки. 
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The article discusses an approach to modeling and correcting structural noise ("banding") in images from Earth observation systems 
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Введение 

Для систем дистанционного зондирования Земли ак-
туальной является задача коррекция структурного шу-
ма, возникающего при съемке земной поверхности с 
помощью приборов с зарядовой связью (ПЗС), скомпо-
нованных в виде линеек или матриц. Подобный шум 
вызван неоднородностью чувствительности отдельных 
фотоприемников и проявляется в виде «полосатости».  

Пусть ( , )B m n  – изображение, формируемое датчиком 
путем сканирования земной поверхности линейками фото-
приёмников. Структурный радиометрический шум можно 
описать аддитивно-мультипликативной моделью [1]:  

*( , ) ( , ) ( ) ( ) ( , ),B m n B m n k n b n e m n      (1) 

где *( , )B m n  – идеальное не искаженное изображение, 

( )k n  и ( )b n  – мультипликативный и аддитивный коэф-
фициенты структурного шума, зависящие от номера 
элемента ,n  но не зависящие от номера строки ,m  

( , )e m n  – случайный аддитивный шум с нулевым сред-
ним.  

Для обработки изображений и коррекции структру-
ных шумов широко применяются алгоритмы на основе 
вейвлет-преобразования [2 – 4].  

В работе авторами [5] предложен эффективный под-
ход к описанию времязависимых структурных искаже-
ний изображений с использованием вейвлет-пакетного 
преобразования. Оптимальное дерево вейвлет-
разложения несёт информацию о структурном шуме, 
оно строится автоматически или автоматизировано на 
основе анализа реальных изображений. По результатам 
проведенного анализа предлагается подход к коррекции 

структурных искажений путем пороговой фильтрации 
вейвлет-коэффициентов.  
Коррекция структурных искажений 

Для этого реальное изображение сперва разлагается 
по вейвлет-пакетам в соответствии с ранее найденным 
по шуму деревом принятия решений [5, 8]. Далее 
вейвлет-коэффициенты фильтруются: 
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где *, l lw w  – исходные и отфильтрованные вейвлет-

коэффициенты для листа разложения ;l  l  – оценка 

СКО структурного шума на l -листе; P  – некоторый 
настраиваемый порог, характеризующий уровень подав-
ления структурного шума; ( )x  – некоторая монотонная 

функция, удовлетворяющая требованиям (0) 0   и 

(1) 1.   Например, можно использовать ( ) ,qx x   где 
1q   – настраиваемый параметр, характеризующий 

степень «жесткости» ограничения шума.  
Далее по отфильтрованным коэффициентам путем 

обратного вейвлет-преобразования формируется восста-
новленное изображение. В силу построения данный под-
ход позволяет хорошо фильтровать аддитивный струк-
турный шум. Даже если реальный шум имеет заметную 
мультипликативную составляющую, то алгоритм останет-
ся работоспособным: в этом случае зависимость шума от 
сюжета будет истолкована как времязависимая состав-
ляющая. Сильные времязависимые искажения для ИК-
датчиков можно рассматривать как аддитивные [6].  
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Для заметных мультипликативных искажений луч-
ший результат можно получить по итерационной схеме: 
сперва находится отфильтрованное изображение, по-
том по исходному и отфильтрованному оценивается 
мультипликативный коэффициент. Этот коэффициент 
можно рассматривать как изображение и снова филь-
тровать вейвлет-пакетами, однако следует учитывать, 
что изменение во времени и соответственно оптималь-
ное дерево вейвлет-пакетов для него может быть дру-
гим, его можно построить с помощью оператора. Далее 
на исходном изображении по фильтрованному коэффи-
циенту корректируется мультипликативная составляю-
щая, а затем на следующей итерации с использованием 
ранее рассмотренного выше подхода – аддитивная.  

В принципе, в данных алгоритмах могут использо-
ваться вейвлеты разного типа, более того, возможен 
выбор разных вейвлетов на различных уровнях разло-
жения. Выбор наиболее подходящих вейвлетов из неко-
торого набора (словаря) может быть произведен авто-
матически с использованием меры «компактности» [5] 
или автоматизировано.   

Если исходное изображение искажено белым шу-
мом, то он будет равномерно разложен по вейвлет-
коэффициентам. В этом плане можно надеяться, что 
рассмотренный выше алгоритм коррекции позволяет 
вместе со структурным шумом бороться и с аддитив-
ным. Однако для этого необходимо, чтобы само изоб-
ражение адекватно описывалось относительно малым 
числом ненулевых вейвлет-коэффициентов. Этого ре-
ально достичь, если дерево вейвлет-разложения фор-
мируется оператором: в этом случае оператор может 
выполнить построение дерева, оптимально «сжимаю-
щего» как структурный шум, так и реальное изображе-
ние. Если же дерево формируется автоматически по 
калибровочному изображению, то нет гарантии, что по-
лученный базис будет подходящим для реальных изоб-
ражений. В этом случае целесообразно оценить пред-
варительно уровень шума e  и если оценка СКО для 

промежуточного изображения ,l eK   где 1K   – 
некий настраиваемый коэффициент, то принятие реше-
ния о разложении должно выполняться либо из сообра-
жений близости дерева к классическому вейвлет-
преобразованию, либо на основе реального изображе-
ния, содержащего характерный сюжет (можно одновре-
менно строить деревья для калибровочного и реального 
изображений).  

Моделирование искажений 
Построенное дерево вейвлет-пакетов можно исполь-

зовать не только для коррекции искаженных изображе-
ний, но и для моделирования соответствующих искаже-
ний. Для этого вейвлет-коэффициенты формируются 
случайно в соответствии с оценками СКО на каждом 

уровне, тогда обратное вейвлет-преобразование даст 
изображение с модельными искажениями. Такие изоб-
ражения можно комбинировать с реальными не иска-
женными изображениями (выступающими в качестве 
эталона) и использовать для тестирования различных 
алгоритмов коррекции и для обучения алгоритмов искус-
ственного интеллекта, например, искусственных 
нейронных сетей.  

Поскольку вейвлет-пакеты обладают мощным сред-
ством описания и коррекции структурных искажений, то 
представляется перспективным включить построенное 
выше вейвлет-разложение в структуру нейронной сети. 
Это легко сделать, поскольку вейвлеты с конечным носи-
телем реализуются через линейную свертку, которая ис-
пользуется в свёрточных нейронных сетях. Соответ-
ственно, нейронная сеть коррекции структурных искаже-
ний включает входные слои вейвлет-разложения, выход-
ные слои вейвлет-восстановления, а между ними – до-
полнительные слои фильтрации коэффициентов (рис. 1).  

В этом смысле предложенные выше подходы к ана-
лизу структурных искажений через вейвлет-пакеты поз-
воляют адаптировать структуру нейронной сети для 
данного класса искажений: архитектура сети фактически 
определяется деревом принятия решения вейвлет раз-
ложения. Это важный результат, поскольку именно про-
ектирование подходящей архитектуры нейронной сети 
является плохо формализуемым этапом (в противопо-
ложность этому обучение – это формально стандартная 
задача минимизации целевой функции потерь). Также 
архитектура нейронной сети хорошо подходит для одно-
временного использования вейвлетов различных типов, 
при этом наиболее подходящие вейвлеты будут выбра-
ны при обучении.  

Фильтрация вейвлет-коэффициентов может осу-
ществляться рядом свёрточных слоёв с нелинейностя-
ми: как известно подобные архитектуры хорошо справ-
ляются с фильтрацией шумов и искажений [9]. Особен-
ностью пакетного вейвлет-разложения является то, что 
на выходе могут присутствовать изображения различных 
размеров, что затрудняет их совместную фильтрацию. 
Поэтому фильтрацию удобно совместить с обратным 
вейвлет-преобразованием, по мере которого осуществ-
ляется постепенное наращивание размерности изобра-
жений. Изображения, достигшие одинаковой размерно-
сти, можно фильтровать совместно сверточными слоями 
с нелинейностями.  

При обучении нейронной сети можно на первом эта-
пе сохранить вейвлет-коэффициенты в свёртках неиз-
менными, обучая только внутреннею фильтрующую 
часть сети. Затем можно продолжить обучение, разре-
шив модификацию параметров свёрток для самих 
вейвлет-преобразований.  

 
Рис. 1.  Архитектура нейронной сети для коррекции структурных искажений 
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Коррекция с учетом смаза и расфокусировки 

При наличии смаза и расфокусировки у датчика за-
дача коррекции структурных искажений значительно 
усложняется – как известно, при коррекции смаза и 
расфокусировки наблюдается подъём (усиление) шу-
мов, в том числе структурного шума [10, 11]. С другой 
стороны, при сильном смазе и расфокусировке исход-
ные изображения в (1) становятся более гладкими, по-
этому резкие детали на B(m,n) заведомо вызваны толь-
ко структурным шумом. Поэтому в целом оценка дерева 
принятия решений о вейвлет-разложении упрощается. 
С другой стороны, требования к точности коррекции 
структурного шума значительно возрастают, поскольку 
слабые остаточные искажения будут усилены при кор-
рекции смаза и расфокусировки.  

Рассмотрим модель смаза и расфокусировки. Пусть 
в (1) изображение 
B*(m,n) = B**(m,n)  H(m,n),   (3) 
где B**(m,n) – идеальное (четкое) изображение без рас-
фокусировки, H(m,n) – функция рассеяния точки датчика, 
 – операция свертки. Для коррекции искажений изобра-
жение после коррекции структурных искажений B*(m,n) 
пропускается через некий инверсный фильтр, в простей-
шем случае линейный фильтр Винера:  
Bвост(m,n) = B*(m,n)  F(m,n),   (4) 

импульсная характеристика которого F(m,n) опреде-
ляется в спектральной области Фурье как 

2
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m n
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m n
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  (5) 

где ,m n   – пространственные частоты,   – параметр 
регуляризации.  

В силу линейности из (4) следует, что остаточные 
структурные искажения, содержащиеся в B*(m,n), при 
восстановлении будут пропущены через фильтр F(m,n), 
который может иметь достаточно протяженную импуль-
сную характеристику, носящую колебательный харак-
тер. Поэтому корректировать искажения лучше до ин-
версной фильтрации (4). Однако идеальная коррекция 
при этом едва ли будет достигнута, а остаточные иска-
жения будут усилены. Поэтому целесообразно допол-

нительно фильтровать изображение после коррекции 
(4). В принципе, для этой фильтрации можно применить 
описанный выше подход с построением дерева решений 
и фильтрацией, необходимо только учитывать, что ад-
дитивный шум после коррекции (4) – не белый и его ам-
плитуда может быть различна в НЧ и ВЧ – блоках 
вейвлет-разложения, а значит и в различных листьях 
дерева. В принципе, СКО шума может быть оценено 
непосредственно по изображениям в листьях дерева. 
Другой вариант – зная СКО белого шума в (1) и спек-
тральную характеристику фильтра ( , )m nF    можно 

предсказать СКО шума l  в любом l  листе дерева, по-
тому что, как известно [7], пакетное вейвлет-
преобразование локализует пространственные частоты 
по вполне определенных окнах с ( , ) .m n l    В любом 
случае для фильтрации шума применяется коррекция с 
найденными мультипликативным и аддитивным коэф-
фициентами, при которой вместо оценок l  использу-

ются оценки .l  Также при построении дерева принятия 
решений можно учитывать структуру фильтра  

( , ) :m nF    если | ( , ) |m nF    значимо (например, более 

чем на 10-20 %) меняется в пределах ,l  то рекомен-
дуется разложение данного элемента дерева (и соот-
ветствующего частотного поддиапазона )l  на две ча-
сти и далее. Такой подход обобщает построенные в [7] 
«зеркальные» вейвлеты на случай произвольного филь-
тра ( , )m nF    с учетом особенностей смаза, расфоку-
сировки и структурного шума.  

На рис. 2 показан пример применения описанных в 
статье подходов: слева вверху исходное изображение от 
ИК-датчика КА «Электро-Л» № 2 со структурным шумом 
в виде вертикальной «полосатости», справа вверху - 
результат коррекции структурного шума  предложенным 
подходом, слева внизу – результат коррекции расфоку-
сировки, справа внизу – результат вейвлет-фильтрации. 
Можно видеть, что вейвлет-фильтрация достаточно эф-
фективна. Однако коррекция расфокусировки привела к 
росту обычного и структурного шума (стали видны оста-
точные полосы) и необходимости его повторной коррек-
ции, которую удалось успешно выполнить.  
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Рис. 2.  Искаженное ИК-изображение и примеры коррекции «полосатости»,  

расфокусировки и остаточных структурных искажений 

Заключение  

На основе описания времязависимых структурных ис-
кажений изображений с использованием аппарата 
вейвлет-пакетов предложен подход к коррекции струк-
турных искажений путем пороговой фильтрации вейвлет-
коэффициентов. Рассмотрены вопросы генерации мо-
дельных искажений, например, для обучения нейронных 
сетей и тестирования различных алгоритмов. Предложе-
на архитектура свёрточной нейронной сети в сочетании в 
вейвлет-пакетами для эффективной коррекции структур-
ных искажений. На заключительном этапе предложена 
технология коррекции шумов в условиях наличия на 
изображениях смаза и расфокусировки.  
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