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Исследована возможность использования методов класси- 
ческого и глубокого машинного обучения для неэталонной оценки 
качества изображений, полученных при колоноскопическом обсле-
довании. Создан тестовый набор колоноскопических изображений, 
проведена его экспертная оценка, оценена корреляция ряда 
популярных неэталонных алгоритмов (BRISQUE, NIQE, TOPIQ, 
PaQ-2-PiQ) с экспертными значениями, предложено 2 собствен-
ных алгоритма, использующих методы машинного обучения. Рас-
смотрены типовые артефакты и искажения на изображениях 
рассматриваемого типа: размытие, блики, эффекты черес-
строчности. Результаты показывают, что оба предложенных 
алгоритма, базирующихся на методах машинного обучения, в 
целом справляются с оцениванием качества изображений, при 
этом несколько занижая среднюю экспертную оценку. Полученные 
выводы и рекомендации могут использоваться при разработке 
системы анализа видеопотока в эндоскопической системе, рабо-
тающей в режиме реального времени, при проведении колоноско-
пических исследований. 
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Введение  

В современных системах медицинской диа-
гностики все чаще используются различные ви-
зуальные технологии, основанные на методах и 
алгоритмах цифровой обработки статических и 
динамических изображений (видеопоследова-
тельностей). Традиционно для этих целей ис-
пользуются также методы как классического, так 
и глубокого машинного обучения, повышающие 
уровень интеллектуализации таких систем. В 
свою очередь, это дает возможность частичной 
автоматизации как диагностики, так и контроля 
качества соответствующих медицинских проце-
дур [1-4], повышающих общий уровень медицин-
ского обслуживания населения. 

Примером успешного применения указанных визу-
альных технологий и систем искусственного интеллекта 
является эндоскопия желудочно-кишечного тракта, в том 
числе колоноскопические исследования кишечника [1, 2]. 

Технические особенности современных эндоскопи-
ческих систем таковы, что они имеют некоторые недо-
статки, в определенной степени осложняющие анализ 
полученных с их помощью колоноскопических изобра-
жений, причем это характерно как для работы врачей-
экспертов, так и при использовании алгоритмов обра-
ботки информации программно-аппаратными комплек-
сами [1, 5-7]. К ним можно отнести: 

– наличие размытия на полученных изображениях, 
вызванного отсутствием автофокусировки на современ-
ных эндоскопах, что обусловлено их конструктивными 
особенностями; 

– дополнительное размытие изображений, возника-
ющее из-за турбулентного движения эндоскопа в поло-
сти исследуемого органа; 

– блики на слизистой оболочке кишечника, обуслов-
ленные отражением света источника, находящегося на 
конце вводимого в него световода; 

– яркость, контрастность и некоторые другие харак-
теристики получаемого эндоскопического изображения 
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могут меняться в значительных пределах, поскольку 
различна геометрия анализируемой области; 

– видеопроцессор эндоскопической системы выдает 
видеопоследовательности с эффектом чересстрочной 
развертки, что приводит к необходимости дополнитель-
ной обработки. 

Указанные недостатки приводят к необходимости 
дополнительной процедуры контроля качества сохра-
няемых изображений и видеопоследовательностей, 
которые в дальнейшем используются как входные дан-
ные для систем машинного обучения. В большинстве 
практических случаев после проведения обследования 
врач-эндоскопист должен сохранить полученный набор 
изображений согласно соответствующему регламенту в 
медико-информационную систему (МИС). C большой 
вероятностью произвольно взятый из видеопотока ко-
лоноскопического исследования кадр не будет доста-
точно информативным. Следовательно, на данном эта-
пе развития систем анализа изображений в эндоскопии 
актуален вопрос о контроле качества сохраненных кад-
ров в МИС с использованием алгоритмических критери-
ев оценивания качества изображений.  

Оценка качества – важнейшая часть процесса ис-
следования при разработке систем обработки и анализа 
изображений [8, 9]. Как известно, проводить ее можно 
как путем усреднения экспертных оценок, так и путем 
разработки соответствующих алгоритмов. Кажется 
естественным использовать для указанных целей эта-
лонные алгоритмы оценки качества изображений, даю-
щие наилучшие результаты. Однако во многих реаль-
ных задачах эталонное изображение, необходимое для 
этих алгоритмов, отсутствует, поэтому приходится ис-
пользовать неэталонные алгоритмы. Они подразделя-
ются на два больших класса по признаку использования 
либо неиспользования априорной информации о виде 
искажения анализируемого изображения (рис. 1).  

К неэталонным алгоритмам оценки качества изоб-
ражений, учитывающим априорную информацию, отно-
сятся те, в которых определенным образом измеряется 
уровень соответствующего типа искажения. Примерами 
могут служить различные виды шумов, размытие, арте-
факты при сжатии по соответствующим стандартам 
(чаще всего – это стандарты сжатия статических изоб-
ражений JPEG и JPEG2000).   

На современном этапе развития визуальных техно-
логий значительное внимание разработчиков уделяется 

созданию и исследованию таких неэталонных алгорит-
мов оценки качества, работа которых уже не ограничи-
вается только одним типом искажения изображений. К 
таким методам и алгоритмам, например, относятся мет-
рики, базирующиеся на статистике естественных изоб-
ражений (NSS – Natural Scene Statistics). Важно отме-
тить, что указанная статистика может рассчитываться и 
в пространственной области [10, 11], и в области 
трансформант вейвлет преобразования, а также дис-
кретного косинусного преобразования [12, 13], которые 
традиционно широко используются в цифровой обра-
ботке изображений. Кроме того, для неэталонной оцен-
ки качества изображений могут применяться различные 
методы как классического, так и глубокого машинного 
обучения [14, 15]. 

Обучение алгоритмов традиционно осуществляется  
на предварительно собранной базе изображений с раз- 
личными типами искажений и усредненными оценками  
экспертов MOS (Mean Opinion Score). В практических  
приложениях часто используют такие общедоступные  
наборы изображений, как LIVE [16], TID2013 [17] и др.  
Указанный этап обучения алгоритмов нужен для того,  
чтобы определить функцию, связывающую значения  
соответствующих признаков и оценку качества изобра-
жений на выходе системы обработки. Фактически поиск 
такой функциональной зависимости часто сводится к 
решению задачи регрессии, которая обычно выполня-
ется при помощи различных методов машинного обуче-
ния, включая и глубокое обучение. При использовании 
для решения указанной задачи алгоритмов неэталонной 
оценки качества часто применяют рандомизированные 
деревья, машину опорных векторов, а также различные 
нейросетевые архитектуры. 

Использование методов глубокого машинного обу-
чения в таких задачах также возможно, но требует сбо-
ра и оценивания большой базы изображений, реле-
вантных решаемой практической задаче. 

Рассмотрим особенности построения неэталонных 
алгоритмов оценивания качества изображений на набо-
ре изображений с колоноскопического исследования. 

Набор колоноскопических изображений 

Собранная совместно с врачами Ярославской об-
ластной клинической онкологической больницы база 
состоит из 1000 статических изображений, взятых из  
10 колоноскопических  видеопоследовательностей  раз- 

 
Рис. 1. Классификация неэталонных алгоритмов оценки качества изображений 
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 а) MOS = 1,6  б) MOS = 2,8  в) MOS = 4 

Рис. 2. Колоноскопические изображения с усредненными экспертными оценками 

 
Рис. 3. Структурная схема вычисления метрики BRISQUE 

 
Рис. 4. Структурная схема вычисления признаков NSS 

личных исследований. Четыре видеопоследовательно-
сти получены на оборудовании с чересстрочным фор-
матом изображения, на остальных видеоданных эф-
фект чересстрочности (ЭЧ) отсутствует. Статические 
изображения нарезались из видеоданных путем сохра-
нения из них каждого десятого кадра. Затем вручную 
отбрасывались последовательные кадры, не имеющие 
заметных видимых различий. Из оставшихся кадров 
случайным образом выбрано 1000 изображений. Изоб-
ражения с ЭЧ в итоге составили около половины от всех 
собранных в наборе [18]. 

Далее происходила процедура субъективного (экс-
пертного) оценивания качества собранного набора 
изображений. Группа из пяти экспертов поставила каж-
дому изображению оценки от «1» до «5». Оценка «1» 
ставилась, если изображение являлось полностью не 
информативным. Оценка «5» ставилась для идеального 
четкого изображения. Для изображений с оценкой «3» 
допускалось наличие зашумленных или размытых об-
ластей, при условии наличия полезных областей. Про-
межуточные оценки «2» и «4» ставились, если изобра-
жения логически сложно было соотнести с установлен-
ными критериями для оценок «1», «3» или «5». 

На рис. 2 показаны примеры колоноскопических 
изображений с усредненными экспертными оценками 
качества MOS. 

На этом этапе дополнительно рассчитывался также 
ряд статистических показателей. Установлено, что ко-

эффициент линейной корреляции оценок экспертов 
друг с другом составил от 0,6 до 0,68. Экспертам до-
полнительно предлагалось повторно оценить 50 изоб-
ражений. Корреляция собственных оценок в двух слу-
чаях составила от 0,75 до 0,84. Рассчитывалось также 
среднее арифметическое пяти экспертных оценок MOS. 
Среднее квадратичное отклонение полученной оценки 
составило 0,72. 

Анализ известных неэталонных алгоритмов  

Алгоритм расчета метрики BRISQUE, приведенный 
на рис. 3, сопоставляет каждому изображению вектор, 
состоящий из 36 признаков [11]. Из них 18 признаков 
вычисляется для исходного изображения, а другие 18 – 
для изображения, уменьшенного в 2 раза. Итоговое 
значение метрики вычисляется с использованием пред-
варительно обученного на базе экспертных оценок ал-
горитма машинного обучения. Для расчета признаков 
алгоритм BRISQUE вычисляет распределение коэффи-
циентов, отвечающих за распределение статистики в 
естественных изображениях – NSS (рис. 4) оцениваемого 
изображения. Признаки представляют собой коэффици-
енты симметричного (GGD) и ассиметричного (AGGD) 
нормальных распределений, наилучшим образом ап-
проксимирующих наблюдаемую статистику данных. 

Алгоритм NIQE [19] оценивает различие между рас-
пределением коэффициентов NSS для изображения и 
приближением того же самого  распределения с исполь- 
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Таблица 1. Значения коэффициента линейной корреляции 

Алгоритм Все изображения Изображения с ЭЧ Изображения без ЭЧ 
BRISQUE 0,46 0,71 0,08 

NIQE 0,5 0,67 0,37 
TOPIQ 0,29 0,18 0,36 

PaQ-2-PiQ 0,18 0,38 0,36 
Таблица 2. Значения среднеквадратичной ошибки  

Алгоритм Все изображения Изображения с ЭЧ Изображения без ЭЧ 
LRG MSE = 0,20 MSE = 0,10 MSE = 0,20 
PR MSE = 0,14 MSE = 0,11 MSE = 0,18 

 
зованием многомерного нормального распределения. 
Метрика NIQE для своего расчета не использует мето-
ды машинного обучения на экспертных оценках.  

Известно, что традиционные метрики оценки каче-
ства плохо решают проблему контекста: они не способ-
ны анализировать содержимое изображения, хотя оно 
влияет на субъективную оценку качества. Для решения 
этой проблемы исследователи прибегают к созданию 
алгоритмов, использующих сверточные нейронные сети 
и другие алгоритмы глубокого машинного обучения.  
К ним, например, относятся алгоритмы TOPIQ [20] и 
PaQ-2-PiQ [21]. Область их применения на практике 
ограничена наличием большого (желательно от 10000 
штук) обучающего набора изображений с экспертными 
оценками MOS. 

В ходе проведенного эксперимента рассчитан ко-
эффициент линейной корреляции между экспертной 
оценкой MOS и описанными выше известными алгорит-
мическими метриками неэталонной оценки качества: 
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Здесь ,i ix y  – экспертные и алгоритмические оценки 

i-го изображения, а ,x  y  – средние значения оценок на 
всем множестве изображений. 

Исследование проводилось: на всем наборе изоб-
ражений, только на изображениях с ЭЧ, только на изоб-
ражениях без ЭЧ. Результаты приведены в табл. 1. Вы-
числение значений метрик произведено с использова-
нием библиотеки IQA-PyTorch [22]. 

Алгоритмы BRISQUE, NIQE, TOPIQ оценивают сте-
пень зашумленности, поэтому обратно коррелируют с 
качеством изображения, поэтому в табл. 1 приведены 
абсолютные значения коэффициента корреляции. 
Установлено, что наилучшие результаты на всем набо-
ре демонстрируют метрики BRISQUE и NIQE, использу-
ющие признаки NSS и два уровня пространственной 
пирамиды (используется как исходное, так и уменьшен-
ное в два раза изображение, см. рис. 3, [11]). 

Одним из этапов вычисления признаков NSS явля-
ется нахождение распределений разностей значений 
между соседними пикселями. В частности, вычисляются 
разности с соседями по горизонтали и вертикали. У 
изображений с ЭЧ эти распределения будут отличаться, 
но только на первом уровне пространственной пирами-
ды. На ее втором уровне изображение уменьшается в 

два раза, и характерные ЭЧ пропадают. Эти особенно-
сти могут объяснять высокую корреляцию оценок алго-
ритмов BRISQUE и NIQE для изображений с ЭЧ. 

Разработка алгоритмов на основе признаков NSS 

Необходимо было обучить алгоритм машинного обу-
чения на наборе колоноскопических изображений, не 
изменяя способов вычисления коэффициентов NSS. 
При этом рассматривались методы линейной регрессии 
(LRG) и использование персептрона (PR) с одним скры-
тым слоем (100 нейронов в скрытом слое, функция ак-
тивации ReLU). В качестве функции потерь использова-
на среднеквадратичная ошибка (MSE):  

 2

1

1  
n

i i
i

MSE z z
n 

  , 

где iz  и z  – исходная и предсказанные оценки для i-го 
изображения. Набор изображений делился на обучаю-
щее и тестовое множество в соотношении 7:3. В табл. 2 
приведены результаты, полученные на тестовом мно-
жестве.  

Разработка алгоритма  
на основе сверточной нейронной сети 

На субъективную оценку качества изображения сре-
ди прочих факторов отрицательно влияют низкая осве-
щенность и наличие бликов отраженного света. Кроме 
того, движение эндоскопа в органах желудочно-
кишечного тракта, в том числе и кишечника, приводит к 
появлению артефактов размытия на изображениях. 
Напротив, если на изображении отчетливо видны стен-
ки внутренних органов – это положительно влияет на 
субъективную оценку. Выявление перечисленных выше 
признаков должно быть под силу алгоритму, базирую-
щемуся на небольшой СНС. Одна из первых попыток 
использования СНС для оценки качества изображений 
приведена в работе [14]. 

В используемой архитектуре (рис. 5) несколько свер-
точных слоев возвращают на выходе тензор размерно-
сти 17x17x50. Затем, как и в оригинальной работе, в 
каждом из 50 каналов извлекаются максимальное и ми-
нимальное значение. Кроме того, добавлено вычисле-
ние среднего значения в каждом канале. После конка-
тенации получается вектор из 150 элементов. С исполь-
зованием нескольких полносвязных слоев вычисляется 
оценка качества. Далее в работе будем называть эту 
модель MMA-CNN (min+max+average – convolutional 
neural network). 
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Рис. 5. Алгоритм оценки качества изображения  

на основе сверточной нейронной сети 

В результате обучения среднеквадратичная ошибка 
на тестовом множестве составила 0,2, как и при исполь-
зовании линейной регрессии по признакам NSS.  

Также визуальный анализ значений в последнем ка-
нале сверточного слоя позволяет сделать следующие 
наблюдения: 

Слишком темные и слишком яркие области отчетли-
во выделились в отдельных каналах. Один канал имеет 
отклики только для изображений с ЭЧ. 

Области «высокого качества» не имеют отдельных 
каналов. 

Примерно на четверти всех изображений виден зонд 
эндоскопа. Зачастую он неподвижен на подверженном 
размытию движения изображении или наоборот, размыт 
или засвечен на переднем плане в целом качественного 
изображения. Изображение зонда не представляет ни-
какой ценности и не должно влиять на субъективную 
оценку, однако извлекаемые признаки слишком низко-
уровневые, чтобы нейронная сеть научилась его игно-
рировать. 

Сравнительный анализ алгоритмов 

На новом тестовом множестве из 300 изображений 

вычислен коэффициент линейной корреляции (ρ) с экс-
пертными оценками MOS. Результаты приведены в 
табл. 3. Они позволяют сделать вывод о преимуществе 
использования алгоритмов PR и MMA-CNN, обученных 
на колоноскопических изображениях, по сравнению с 
универсальными неэталонными алгоритмами типа 
BRISQUE. 

Таблица 3. Сравнительный анализ  
рассматриваемых алгоритмов  

Алгоритм Коэффициент  
линейной корреляции 

BRISQUE 0,43 
PR 0,88 

MMA-CNN 0,83 
На рис. 6 приведены примеры изображений с экс-

пертными оценками MOS и оценками, полученными 
рассмотренными выше алгоритмами. Видно, что оба 
алгоритма, базирующихся на методах машинного обу-
чения (PR и MMA-CNN), в целом справляются с оцени-
ванием качества изображений, при этом несколько за-
нижая среднюю экспертную оценку. 

Заключение 

В данном исследовании создан тестовый набор ко-
лоноскопических изображений, проведена его эксперт-
ная оценка, оценена корреляция ряда неэталонных ал-
горитмов с экспертными значениями, предложено 2 
собственных алгоритма, использующих методы машин-
ного обучения. 

На данном этапе исследования рассмотрены моде-
ли, использующие только низкоуровневые признаки или 
их статистику распределения. Такие модели менее под-
вержены переобучению на небольшом наборе изобра-
жений, который чаще всего и имеется в распоряжении 
исследователей. 

Дальнейшая работа будет направлена на выявление 
высокоуровневых признаков. С учетом относительно 
небольшого количества изображений в обучающих и 
тестовых наборах потребуется дополнительная размет-
ка с использованием масок или разбиения на патчи, 
чтобы обучить нейронную сеть отыскивать области, 
заслуживающие большего  или меньшего внимания. 

 
а) MOS = 1,8;  

BRISQUE = 131,24;  
PR = 1,4;MMA-CNN = 1,5 

б) MOS = 2,8;  
BRISQUE = 20,64; PR = 3,03;  

MMA-CNN = 2,6 

в) MOS = 4,2; 
 BRISQUE = 43,45; PR = 3,72;  

MMA-CNN = 3,6 
Рис. 6. Изображения с оценками, полученными экспертами (MOS)  

и рассмотренными алгоритмами 
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НОВЫЕ КНИГИ 

 

Поборчая Н.Е. 
Методы и алгоритмы оценивания параметров канала связи в условиях априорной неопре-
деленности в системах с приемником прямого преобразования: Учебное издание для вузов, 
М.: Изд-во «Горячая линия-Телеком», 2023 г. 240 с.: ил. 

Изложены методы и алгоритмы совместного оценивания параметров сигнала (канала связи) в 
условиях априорной неопределенности относительно статистических характеристик канала связи и 
законов распределения шумов. Особое внимание уделено системам с приемником прямого преобразо-
вания. Рассмотрены вопросы синтеза и анализа процедур оценивания для систем связи с одной пере-
дающей и приемной антенной (SISO), с несколькими передающими и приемными антеннами (MIMO), 
а также для систем с ортогональным частотным мультиплексированием (OFDM). 

Предложенные алгоритмы способствуют повышению помехоустойчивости приема информации 
или понижению вычислительной сложности процедур обработки сигнала. 

Для научных работников, инженеров и аспирантов. Может быть полезна студентам старших кур-
сов и магистрантам, обучающимся по направлению подготовки «Радиотехника» и «Инфокоммуника-
ционные технологии и системы связи». 

 


