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Анализируются интерферометрическая и стереофотограммет-
рическая цифровые модели местности GLO-30 и AW3D30. Отмеча-
ется, что GLO-30 имеет в среднем более высокую вертикальную 
точность, однако в городских районах высоты искусственных объ-
ектов на ней существенно занижены. Предлагается алгоритм ком-
плексирования цифровых моделей местности, позволяющий повы-
сить точность интерферометрической модели местности в город-
ских районах за счет стереофотограмметрических данных. Для вы-
явления городских районов привлекаются электронные карты 
OpenStreetMap. Приводятся результаты предложенного алгоритма. 
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Введение 

Высокоточное знание высот земной поверх-
ности (рельефа) и расположенных на ней объек-
тов необходимо во многих областях человече-
ской деятельности, в том числе в навигации и 
при обработке аэрокосмических изображений. 

В настоящее время в открытом доступе стали 
доступны две высокоточные глобальные цифровые мо-
дели местности (ЦММ), описывающие высоты земной 
поверхности или расположенных на ней объектов с ша-
гом в одну угловую секунду широты или долготы: 
AW3D30 и GLO-30. 

ЦММ AW3D30 сформирована стереофотограмметри-
ческим методом [1] по данным датчика PRISM японского 
космического аппарата ALOS (другое название аппара- 
та – Daichi). Среднеквадратичная ошибка абсолютных 
высот на AW3D30 заявлена равной 5 м [2]. 

ЦММ GLO-30 сформирована интерферометрическим 
методом [3–6] по данным немецких космических аппара-
тов TerraSAR-X и TanDEM-X. Ошибка LE90 абсолютных 
высот на GLO-30 заявлена равной 4 м [7]. Если считать 
закон распределения ошибок нормальным, то это соот-
ветствует среднеквадратичной ошибке порядка 2,5 м, т.е. 
примерно в 2 раза меньшей, чем у AW3D30. 

Однако особенности радиолокационной интерферо-
метрии (боковой обзор, более высокая проникающая спо-
собность радиоволн по сравнению с видимым излучени-
ем, проблема развертывания фазы на радиолокационных 
интерферограммах) привели к тому, что, несмотря на 
высокую среднюю вертикальную точность, в городских 
районах высоты большинства искусственных объектов на 
GLO-30 существенно занижены. Так же, как и более ста-
рая глобальная интерферометрическая ЦММ SRTM, 

GLO-30 за счет описанных выше особенностей прибли-
жается к цифровой модели рельефа (ЦМР), которая в 
идеале должна описывать лишь высоты земной поверх-
ности (рельефа), с которой удалены все расположенные 
на ней объекты. 

ЦМР предпочтительны при ортотрансформировании 
оптических изображений в случаях, когда пространствен-
ное разрешение изображения существенно выше, чем у 
модели высот. При этом здания на полученных ортопла-
нах остаются наклоненными, но координаты углов осно-
вания зданий измеряются правильно, а крыша имеет не-
искаженную форму. По смещению крыши относительно 
основания можно дополнительно оценить высоту здания. 
Если же вместо ЦМР будет использоваться ЦММ, то из-
за недостаточной детальности границы высотных зданий 
на ней будут смещены относительно истинного положе-
ния, из-за чего на полученных ортопланах крыши зданий 
могут быть сильно деформированы: отдельные фрагмен-
ты крыши будут перенесены к основанию, а оставшиеся 
фрагменты останутся смещенными относительно осно-
вания. 

В то же время в других областях, например в навига-
ции, предпочтительны ЦММ. Также их следует применять 
и при ортотрансформировании аэрокосмических изобра-
жений среднего разрешения, когда детальность ЦММ 
оказывается сопоставима с детальностью изображения. 
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Поскольку имеющаяся в настоящее время глобальная 
ЦММ AW3D30 менее точна, чем приближенная к ЦМР 
GLO-30, актуальна задача их комплексирования [8]  
с получением ЦММ, на которой высоты рельефа взяты  
с более точной GLO-30, а высоты наземных объектов –  
с AW3D30. 

Получение опорной информации  
о расположении объектов на земной поверхности 

Отличить высотные объекты, расположенные на зем-
ной поверхности, от перепадов высот рельефа – крайне 
сложная задача. В то же время с развитием картографи-
ческих сервисов в настоящее время доступна априорная 
информация о расположении таких объектов. Открытым 
глобальным картографическим источником данных явля-
ются электронные карты OpenStreetMap [9]. В качестве 
высотных объектов, расположенных на земной поверхно-
сти, могут быть приняты следующие объекты электрон-
ных карт: 

1) здания; 
2) искусственные сооружения: 

а) резервуары для хранения; 
б) накопительные баки; 
в) мосты; 
г) эстакады; 
д) развязки дорог; 
е) башни; 
ж) вышки; 
з) мачты; 
и) столбы; 
к) дымовые трубы; 
л) маяки; 
м) буровые платформы; 
н) насыпи и т.п. 

Каждый из перечисленных объектов описывается в 
векторном виде как многоугольник, линия или точка. Для 
использования картографических данных при комплекси-
ровании ЦММ необходимо преобразовать их к растрово-
му виду – бинарной маске в растровой сетке широт и дол-
гот, нулевое значение которой соответствует отсутствию 
наземных объектов в пределах пикселя маски, а единич-
ное значение – наличию хотя бы одного такого объекта. 

Сформированная бинарная маска требует дополни-
тельного уточнения. Во-первых, границы объектов на 
векторных картах и AW3D30 могут совпадать неточно. 
Во-вторых, на электронные карты могут быть нанесены 
не все объекты. В-третьих, из-за недостаточно высокой 
детальности AW3D30 близко расположенные высотные 
объекты могут слиться на ней в один объект. 

Предлагается следующий алгоритм уточнения бинар-
ной маски наземных высотных объектов. 

В окрестности каждого нулевого пикселя маски вы-
полняется классификация пикселей на пиксели рельефа 
и пиксели наземных объектов. К рельефу относятся пик-
сели с нулевым значением маски, все смежные пиксели 
которых также нулевые. Остальные пиксели признаются 
пикселями наземных объектов. 

Если во вторую группу попал хотя бы один пиксель 
окрестности, анализируется количество пикселей в пер-
вой группе. Если оно меньше заданного порога, нулевой 

пиксель маски заменяется единичным. В противном слу-
чае в пределах каждой группы пикселей рассчитываются: 

1) модуль разности средней высоты на AW3D30 в 
пределах группы пикселей и высоты на GLO-30, соответ-
ствующей анализируемому нулевому пикселю маски; 

2) модуль средней разности высот на AW3D30 и  
GLO-30 в пределах группы пикселей. 

Также оценивается модуль разности высот на 
AW3D30 и GLO-30, соответствующих анализируемому 
нулевому пикселю маски. 

Нулевой пиксель маски заменяется единичным, если: 
1) модуль разности средней высоты на AW3D30 в 

пределах пикселей рельефа и высоты на GLO-30, соот-
ветствующей анализируемому нулевому пикселю маски, 
превышает выбранный порог; 

2) модуль разности средней высоты на AW3D30 в 
пределах пикселей наземных объектов и высоты на  
GLO-30, соответствующей анализируемому нулевому 
пикселю маски, меньше модуля разности средней высоты 
на AW3D30 в пределах пикселей рельефа и высоты на 
GLO-30, соответствующей анализируемому нулевому 
пикселю маски; 

3) модуль разности высот на AW3D30 и GLO-30, соот-
ветствующих анализируемому нулевому пикселю маски, 
превышает модуль средней разности высот на AW3D30 и 
GLO-30 в пределах пикселей рельефа сильнее, чем на 
выбранный порог; 

4) модуль средней разности высот на AW3D30 и  
GLO-30 в пределах пикселей наземных объектов превы-
шает модуль средней разности высот на AW3D30 и GLO-
30 в пределах пикселей рельефа сильнее, чем на вы-
бранный порог. 

Указанный процесс коррекции маски выполняется в 
несколько итераций. Число итераций, размеры окрестно-
сти и значения порогов подбираются эмпирическим путем 
так, чтобы единичные пиксели скорректированной маски 
покрыли большую часть высотных объектов, представ-
ленных в городских районах на AW3D30. 

Геометрическое совмещение ЦММ AW3D30 и GLO-30 

Комплексируемые ЦММ AW3D30 и GLO-30 представ-
лены на различных растровых сетках. В пределах от  
50° ю.ш. до 50° с.ш. шаги пикселей на AW3D30 и GLO-30 
одинаковы, но данные GLO-30 смещены на половину 
пикселя по диагонали относительно AW3D30. В припо-
лярных и полярных широтах данные GLO-30 дополни-
тельно прорежены по долготе по сравнению с AW3D30. 
Таким образом, перед выполнением комплексирования 
требуется геометрическое совмещение ЦММ AW3D30 и 
GLO-30. 

При совмещении необходимо определить, какая из 
ЦММ останется в исходной сетке, а какая будет транс-
формироваться. Поскольку трансформация требует ин-
терполяции высот, этот выбор обусловлен минимизацией 
искажений, возникающих при интерполяции. От ЦММ 
GLO-30 при комплексировании берутся данные по рель-
ефу, который в преобладающем большинстве случаев 
обладает гладким характером. От ЦММ AW3D30 при 
комплексировании берутся данные по высотным назем-
ным объектам, для которых характерны резкие границы, 
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в пределах которых из-за нарушения теоремы Котельни-
кова при интерполяции будут наблюдаться артефакты. 
Следовательно, ЦММ AW3D30 остается в исходной раст-
ровой сетке, а ЦММ GLO-30 трансформируется путем 
уменьшения шага дискретизации в приполярных и поляр-
ных областях, а также плоскопараллельного сдвига на 
половину пикселя по диагонали. 

В качестве интерполятора выбран двумерный фильтр 
Ланцоша размерами 4x4 пикселя: 
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где ( )mnh  – матрица высот, ( , )h y x  – интерполирован-

ное значение высоты, x    – функция «пол». 

Выбор обусловлен компромиссом между точностью 
восстановления высоты на гладких участках рельефа и 
амплитудой выбросов в редких случаях, когда для высот 
рельефа нарушается теорема Котельникова. 

Комплексирование ЦММ AW3D30 и GLO-30 

При комплексировании ЦММ AW3D30 и GLO-30 
участки на GLO-30, соответствующие единичным пиксе-
лям mn  сформированной бинарной маски наземных 
высотных объектов, заполняются данными AW3D30 с 
обеспечением бесшовной стыковки на границах участ-
ков [10]. 

Стыковка обеспечивается с использованием коррек-
тирующей высотной поверхности ,коррh  применяемой к 

значениям высоты на AW3D30. Корректирующая по-
верхность позволяет скомпенсировать систематические 
ошибки высоты, вызванные меньшей точностью 
AW3D30 по сравнению с GLO-30. 

Для нулевых пикселей сформированной бинарной 

маски наземных высотных объектов корректирующая 
поверхность определяется как 3 ,коррmn GLOmn AW Dmnh h h   

где ( )GLOmnh  и 3( )AW Dmnh  – матричное представление 
ЦММ GLO-30 и AW3D30, приведенных к единой растро-
вой сетке. 

В единичных пикселях сформированной бинарной 
маски наземных высотных объектов значения корректи-
рующей поверхности определяются с помощью интерпо-
ляции по методу обратных взвешенных расстояний: 

2 2  
, ,

2 2  
,

(1 )( )
,

(1 )( )

p
коррm k n l m k n l

k l
коррmn p

m k n l
k l

h k l
h

k l



 


   


 

 


  




 

где 2 20 ;k l D    ,k l  – целые; D  и p  – радиус и 
показатель фильтра обратных расстояний,   – малая 
величина, используемая для регуляризации. 

После получения значений коррmnh  во всех пикселях 

участки на GLO-30, соответствующие единичным значе-
ниям ,mn  заполняются значениями .GLOmn коррmnh h  

Экспериментальные исследования 
Комплексирование ЦММ AW3D30 и GLO-30 выполне-

но на всей сетке широт и долгот земного эллипсоида. 
Примеры исходных данных и результата комплексирова-
ния для территории г. Москва приведены на рис. 1. Визу-
альный анализ результатов показывает, что все назем-
ные высотные объекты успешно перенесены с AW3D30 и 
GLO-30, при этом за пределами городов на GLO-30 со-
хранены более точные данные о высоте рельефа. 
Заключение 

Предложенный алгоритм комплексирования ЦММ 
AW3D30 и GLO-30 с привлечением электронных карт 
OpenStreetMap позволяет получить ЦММ, более точную 
для городских районов, чем GLO-30, и более точную за 
пределами городов, чем AW3D30. 

    
 а) исходная ЦММ AW3D30 б) ЦММ GLO-30, совмещенная с AW3D30 
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 в) бинарная маска, сформированная по данным OpenStreetMap г) разность совмещенных AW3D30 и GLO-30 

       
 д) разность результата комплексирования и GLO-30 е) результат комплексирования 

Рис. 1 Комплексирование ЦММ AW3D30 и GLO-30 для территории г. Москва 
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