
Цифровая Обработка Сигналов №3/2024 

 
 

59

Предложено алгоритмическое обеспечение, предназначенное 
для создания опорных данных в виде массивов опорных точек мест-
ности. Рассмотрена технологическая схема формирования опор-
ных точек, включающая алгоритмы детектирования характерных 
объектов на спутниковых снимках высокого разрешения, их струк-
турирования и создания абрисов. 
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Введение 

Геокодирование спутниковых изображений 
земной поверхности согласно ГОСТ Р 59480-
2021 осуществляется на основе строгой моде-
ли съемки, исходными данными для которой 
является измерительная информация (ИИ), полученная 
от астродатчиков, датчиков угловых скоростей (ДУС) и 
приёмников ГЛОНАСС/GPS. При штатной работе изме-
рительных систем и регулярном проведении калибро-
вочных мероприятий этой информации достаточно для 
обеспечения высокоточной геопривязки материалов 
съемки [1]. Однако в процессе эксплуатации космиче-
ского аппарата (КА) могут возникать нештатные ситуа-
ции, приводящие, например, к сбоям в работе астро-
датчиков [2]. В результате снижается точность опреде-
ления элементов внешнего ориентирования камеры и, 
как следствие, точность геокодирования получаемых в 
ходе наземной обработки информационных продуктов. 
Поэтому для сохранения измерительных свойств рас-
пространяемых потребителям видеоданных в процессе 
обработки должна привлекаться высокоточная опорная 
информация, на основе которой уточняются параметры 
строгой модели съёмки. 

В настоящее время при обработке данных от КА се-
рий «Ресурс-П», «Канопус-B» применяется технология 
автоматического устранения грубых ошибок геодезиче-
ской привязки по синтезированному из снимков КА 
«Landsat-8» непрерывному опорному покрытию [3]. Это 
позволяет при нештатной работе измерительных си-
стем спутника формировать выходные продукты, геоко-
дированные с точностью опоры, то есть 20-25 м. Понят-
но, что для снижения этой величины до единиц метров 
следует использовать более точные опорные данные. 

В работе [4] предложена концепция поддержания 
точностных характеристик материалов съемки на основе 
опорных точек местности (ОТМ), формируемых при 

штатной работе измерительных систем КА. Согласно этой 
концепции, спутник осуществляет съемку больших пло-
щадей с различными углами крена. На основе получен-
ных изображений формируются массивы ОТМ. Каждая 
ОТМ представляет собой кортеж ( , , , ),c a p e  где 

( , , )c h   – широта, долгота и высота характерного 

объекта соответственно; ( , )a b x y  – ортотрансформи-
рованное изображение этого объекта в картографической 
проекции (абрис), центр которого соответствует коорди-
натам ( , );   ( , )hp    – точность координат опорного 
объекта в плане и по высоте; е – сопроводительная ин-
формация (дата съемки, идентификатор КА и т.д.). 

При решении задачи уточнения строгой модели 
съемки ОТМ обладают рядом преимуществ перед не-
прерывным покрытием аналогичного разрешения. Во-
первых, объем данных и вычислительная сложность 
актуализации опоры на порядки меньше. Во-вторых, 
детектирование характерных объектов при формирова-
нии ОТМ позволяет ускорить этап уточнения геодезиче-
ской привязки снимков, к которому предъявляются жёст-
кие требования по быстродействию. В-третьих, возмож-
ность учёта точностных характеристик ݌ каждой ОТМ 
позволяет создать единую опору из снимков c различ-
ными характеристиками (в т.ч. от разных КА). При уточ-
нении параметров строгой модели геопривязки по мето-
ду наименьших квадратов ݌ определяет вес (степень 
влияния) каждой ОТМ. 

Целью работы является создание алгоритмического 
обеспечения комплекса автоматического формирования 
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опорного покрытия в виде набора ОТМ, используемых 
при уточнении элементов внешнего ориентирования 
строгой модели съемки для сохранения точностных ха-
рактеристик выходных информационных продуктов от 
КА при нештатной работе его измерительных систем. 
Для достижения поставленной цели в работе решаются 
следующие задачи: 

– разрабатывается технологическая схема форми-
рования ОТМ с оценкой точности; 

– разрабатываются алгоритмы детектирования ха-
рактерных объектов для создания абрисов ОТМ; 

– разрабатываются алгоритмы структурирования 
(обеспечения равномерного распределения) ОТМ по 
земной поверхности. 

Технологическая схема формирования ОТМ  
в потоковом режиме 

Технология автоматического формирования ОТМ 
основана на следующих конструктивных технических 
решениях. 

Первое. Для обеспечения высоких точностных ха-
рактеристик формируемых ОТМ следует использовать 
маршруты съемки от КА высокодетального наблюдения 
типа «Ресурс-П», «Ресурс-ПМ», «РБКА», сопровождае-
мые полнофункциональной измерительной информаци-
ей (ИИ). 

Второе. Распознавание характерных объектов ОТМ 
должно выполняться в автоматическом режиме. 

Третье. С целью сокращения избыточности и обес-
печения равномерного распределения ОТМ по земной 
поверхности технология должна предусматривать опе-
рацию структурирования ОТМ по ячейкам координатной 
сетки и контроль избыточности. 

В соответствии с этими решениями в последова-
тельность действий при потоковой каталогизации сним-
ка высокого разрешения добавляется комплекс алго-
ритмов автоматического формирования ОТМ, состоя-
щий из следующих шагов: 

1. Определение полноты ИИ. На этом шаге анализи-
руется наличие данных от астродатчиков, ДУС и т.д. На 
основе этой информации оценивается точность опре-
деления элементов внешнего ориентирования. Если 
точность неудовлетворительна (например, отсутствуют 
измерения двух и более астродатчиков КА «Ресурс-П»), 
выполняется прерывание алгоритма. 

2. Обработка исходных видеоданных для получения 
продукта уровня 1 – геокодированного и радиометриче-
ски скорректированного изображения ( , ).b m n  

3. Детектирование: определение на изображении 
( , )b m n  планарных координат I  характерных объектов 

{( , )}, {1,... },i im n i I  пригодных для формирования ОТМ. 

4. Оценка точности ip  определения геодезических 

координат ic  каждого характерного объекта. 

5. Структурирование: оценка параметров совместного 
распределения найденных объектов и уже имеющихся 
ОТМ по ячейкам регулярной координатной сетки и после-
дующая отбраковка избыточных с целью обеспечения 
равномерного распределения ОТМ в пространстве. 

6. Формирование абрисов ОТМ. На этом шаге путём 
ортотрансформирования фрагментов исходного снимка 

( , )b m n  создаются абрисы ( , )i ia b x y  в картографиче-

ской системе координат и заполняются метаданные .ie  

 
Рис. 1. Технологическая схема формирования ОТМ 

Соответствующая технологическая схема автомати-
ческого создания покрытия ОТМ представлена на рис. 1. 
В приведенной схеме геокодирование изображений 
уровня обработки 1 основано на строгой модели съемки 
[5], позволяющей рассчитать для каждого пикселя ( , )m n  

его геодезические координаты ( , )   точки пересечения 
визирного луча с референц-эллипсоидом на высоте 

: ( , , , , , ),h m n h   Ω Θ q ( , , , , , ),F m n h  Ω Θ q  где Ω  – 
вектор входных параметров, описывающих элементы 
внешнего ориентирования, ,Θ  q  – векторы, описываю-
щие элементы внутреннего ориентирования камеры и 
конструктивные углы астродатчиков. 

Опуская особенности модели видеотракта конкрет-
ных съемочных устройств [6], среднеквадратическая 
ошибка (root mean square deviation, СКО) измерения 
плановых координат характерных объектов   в общем 
случае определяется точностью измерения угловых и 
линейных элементов внешнего ориентирования и зави-
сит от точности используемой для ортотрансформиро-
вания цифровой модели рельефа (ЦМР), 

2 2 2 ,L A E         (1) 

L  – СКО определения линейных элементов внешнего 
ориентирования, характеризующаяся точностью работы 
приемников ГЛОНАСС/GPS; A  – СКО, вызванная не-
точностью измерения углов тангажа   и крена   съе-
мочного устройства, 

2 2 ,A H         (2) 

где ,    – погрешность измерения углов крена и тан-

гажа в радианах, H  – высота съемки. 
СКО смещения плановых координат объекта E  зави-

сит от точности используемой ЦМР h  и угла отклонения 

от надира ,  

( ) sintan arcsin ,E h
R H

R


 
    

     (3) 

где R  – радиус Земли. 
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При использовании внешней ЦМР точность высоты 
характерных объектов равна .h  Если ОТМ формиру-

ются в ходе стереосъемки, то значение h  определяет-
ся из соотношения 

2 2

,
/

L A
h B H

 



   (4) 

где ܤ – величина стереобазы. 
Таким образом с использованием соотношений (1-4) 

определяются точностные характеристики каждой ОТМ, 
что является весьма важным для последующего выпол-
нения процедуры геодезического ориентирования. 

Алгоритмы детектирования характерных объектов 

Важным составным элементом разрабатываемого 
комплекса является алгоритм автоматического детекти-
рования подходящих для формирования ОТМ харак-
терных объектов на спутниковых снимках высокого про-
странственного разрешения. Ключевое свойство ОТМ – 
возможность надёжной автоматической идентификации 
на других изображениях ДЗЗ высокого разрешения пу-
тем корреляционно-экстремального поиска абриса [7]. 
Для достижения этого свойства необходимо обеспечить 

а) уникальность характерного объекта в пределах 
абриса; 

б) контрастность и различимость объекта, достаточ-
ную для субпиксельной идентификации; 

в) устойчивость (отсутствие существенных сюжетных 
различий в окрестности объекта на разновременных 
снимках). 

Детектор Харриса. В работе [8] для определения 
характерных объектов на снимках с пространственным 
разрешением 10 метров предложено использовать де-
тектор Харриса – один из наиболее эффективных [9] де-
текторов углов. Авторы указывают, что в связи с особен-
ностями детектора объекты преимущественно распола-
гаются по границам береговых линий. Такое распределе-
ние удовлетворительно для уточнения геодезической 
привязки данных среднего разрешения от КА, характери-
зующихся широкой полосой обзора. Однако при обработ-
ке данных от КА высокого пространственного разрешения 
с полосой обзора 20-40 км крайне важно обеспечить мак-
симально равномерное распределение ОТМ. 

В связи с этим исследовано поведение оператора 
Харриса на изображениях субметрового разрешения. 
Величина отклика оператора Харриса 0 0( , )R m n  для 

объекта изображения ( , )b m n  с координатами 0 0( , )m n  
определяется путем анализа градиента в окне 

0 0{( , ), , },k k k kW m n m m w n n w      где w  – раз-

мер окна. Градиент в окне ܹ описывается матрицей 

0 0

2

( , ) ( , )
( , ) 2

( , ) ( , )

( )
,

( )
k k k k

k k k k

n m n
k k k

m n W m n W
m n m n n

k k k
m n W m n W

 

 

   
 

     
 

 

 
G    (5) 

где ,m
k  n

k  – частные производные b  в точке ( , )k km n  
по осям n  и m  соответственно. 

0 0 0 00 0 ( , ) ( , )( , ) det trace ,m n m nR m n k  G G   

где 0, 04k   – эмпирическая константа. Значение R  
велико в точках, в которых градиент (5) изображения b  
быстро растёт в двух направлениях; обычно на углах 
некоторого объекта. 

Масштаб пространства поиска характерных объектов 
фиксирован и определяется параметром ,w  который 
обычно принимается равным 2 (окно W  размером 3×3). 
Однако на снимках высокого разрешения при малых w  
наибольший отклик детектора дают деревья, кусты, ма-
шины и подобные локально-характерные объекты с ли-
нейными размерами порядка нескольких метров, кото-
рые в отсутствии характерного окружения не могут быть 
надежно идентифицированы на разновременных изоб-
ражениях (рис. 2, а). Увеличение w  позволяет детекти-
ровать более крупные объекты, но с меньшей точностью 
(рис. 2, б). Поэтому для точного детектирования харак-
терных участков объектов заданного размера рекомен-
довано [10] строить пирамиду разномасштабных изоб-
ражений 2 4( , , ,...),b b b

 
 где ib


 – дискретная функция 

изображения ܾ, прореженного в i  раз, и последователь-
но уточнять координаты на каждом уровне масштаба 
(рис. 2, б). Пирамидальное представление позволяет 
снизить размерность задачи с сопутствующим ростом 
производительности и одновременно получить коорди-
наты характерных объектов заданного масштаба с пик-
сельной точностью. 

 
а) в масштабе 1:1 б) в масштабе 1:8 в) по пирамидальному  

представлению 
Рис. 2.  Характерные объекты изображения, найденные детектором Харриса  

на изображении городской застройки с разрешением 0,7м  
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Рис. 3.  Диаграмма размаха, отображающая распределение доли некондиционных ОТМ в зависимости от детектора и сюжета 

Согласно экспертной оценке (рис. 3), на изображе-
ниях с большим количеством техногенных объектов 
результаты работы пирамидального детектора Харриса 
приемлемы: 16-24 % ошибок первого рода (количество 
ложных срабатываний детектора, в результате которых 
для формирования ОТМ отобран объект, точная авто-
матическая идентификация которого на снимке невоз-
можна: тени, углы высотных зданий и т.п., то есть 
сформирована некондиционная ОТМ). Однако в сюже-
тах без населённых пунктов (лес, поля) доля таких ОТМ 
составляет 29-52 %: деревья в плотном лесном масси-
ве, тени от них, берега рек и т.п. При этом автоматиче-
ски отбраковывать такого рода объекты по величине 
отклика R  не представляется возможным. 

Детектор пятен (blobs). Детектор Харриса показал 
неудовлетворительные результаты в лесных и степных 
районах, где наиболее устойчивыми являются отдельно 
стоящие низкие природные объекты: локальные обла-
сти с постоянной яркостью, отличной от фона. Подоб-
ные характерные особенности потенциально могут быть 
обнаружены детекторами пятен, основанными на ана-
лизе пирамиды Лапласиан Гауссиана (Laplacian of the 
Gaussian, LoG) или разностей Гауссиан (Difference of 
Gaussians, DoG). Эти детекторы и их вариации приме-
няются при построении дескрипторов, описывающих 
ключевые точки изображений в алгоритмах SIFT, SURF, 
ORB, MSER. 

В работе [3] алгоритм SURF рекомендован в каче-
стве одной из ключевых частей механизма идентифика-
ции одноименных объектов на спутниковых снимках. 
Отмечено, что в рамках поставленной задачи с его по-
мощью достигается оптимальный баланс скорости об-
работки и доли ложных идентификаций. Детектор SURF 
принимает решение об отнесении объекта к характер-
ным на основе анализа величины определителя матри-
цы Гессе (Fast-Hessian Detector) – аппроксимации DoG, 
позволяющей в несколько раз ускорить вычисления це-
ной снижения точности. В задаче детектирования ОТМ 
первоочередным фактором является возможность по-
следующей надёжной идентификации характерных 
объектов, а не скорость их определения. 

По этой причине для эксперимента выбран детектор 
на основе DoG (используется в алгоритме SIFT) как 
один из наиболее устойчивых [11]. 

Доля объектов, ложно отнесённых алгоритмом SIFT 
к характерным в сюжетах без населённых пунктов (лес, 
поля), снизилась до 20-41 %. В отличие от детекторов 
углов, детекторы на основе DoG часто выделяют при-

родные и техногенные объекты округлой формы, в част-
ности отдельные элементы крыш и засветы, крупные 
кусты и т.п. (рис. 4, 5). В связи с этим доля ошибок пер-
вого рода на городских сюжетах больше, чем при ис-
пользовании детектора углов: от 17 до 39 %. 

Таким образом детекторы Харриса и DoG находятся 
в паритете. Первый даёт лучшие результаты в городской 
застройке, где присутствует множество домов, площа-
дей и подобных объектов, фрагменты которых являются 
характерными с точки зрения детектора углов. Детектор 
«пятен» алгоритма SIFT относит к характерным объек-
там отдельно стоящие кусты, деревья и т.п. участки 
местности, которые являются хорошими кандидатами 
для формирования ОТМ в условиях отсутствия техно-
генных объектов. В связи с этим рассмотрена возмож-
ность создания гибридного алгоритма, автоматически 
переходящего к одному из детекторов в зависимости от 
априорно известного характера подстилающей поверх-
ности. На этом этапе проведена попытка применить от-
крытые картографические данные OpenStreetMap (OSM) 
для классификации типа сюжета. К сожалению, в связи 
со слабой стандартизацией тегов OSM, нестабильным 
качеством и детализацией картографической основы, 
надежно решить эту задачу не удалось. 

Подходы к классификации сюжета без использова-
ния априорной информации (в частности, с привлечени-
ем машинного обучения) не применялись в связи с их 
высокой вычислительной сложностью. 

Детектор на основе контуров. По результатам ана-
лиза работы оператора сделан вывод, что хорошими 
кандидатами в опорные точки являются углы прямо-
угольных объектов с контрастными границами (капи-
тальные строения, площадки, навесы, бассейны, иные 
стационарные искусственные объекты). Подобные объ-
екты могут быть найдены детектором Харриса, но боль-
шая доля ошибок первого рода не позволяет построить 
универсальное решение на его базе. Общая причина 
ошибок – недостаток информации при принятии реше-
ния, т.к. детекторы углов анализируют градиенты ло-
кальных участков изображения и не владеют более ши-
роким контекстом: геометрией объектов, морфологиче-
скими свойствами и т.п. Нередко для высокоуровневого 
анализа изображений применяются алгоритмы обработ-
ки контуров [12-14]. С целью снижения доли ошибок раз-
работан альтернативный детектор характерных объек-
тов, основанный на контурном анализе текстуры изоб-
ражений. Входные данные алгоритма: { ( , )}B b m n  – 
анализируемое  изображение,  q   –  порог  чувствитель- 
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а) Отдельно стоящее дерево б) Отдельно стоящее дерево в) Группа деревьев 

Рис. 4.  Изображения детектированных с помощью SIFT характерных объектов в лесном массиве 

 
а) Фрагмент крыши  б) Фрагмент крыши  в) Засвет 

Рис. 5.  Изображения детектированных с помощью SIFT характерных объектов в населённом пункте 

 
а) Исходное  
изображение 

б) Выделенные  
границы 

в) Контуры 
г) Результат 
отбраковки 

Рис. 6. Результаты выполнения основных этапов предлагаемого алгоритма 

ности детектора. Алгоритм состоит из шести последова-
тельных шагов. 

1. Сглаживание анализируемого изображения раз-
мытием по Гауссу: Blur( ).GB B . 

2. Формирование бинарного изображения границ пу-
тём применения оператора Кэнни: Canny( ).C GB B  

3. Извлечение контуров объектов [15]: 
BorderFollowing( )CA B . 

4. Их аппроксимация (сглаживание) по алгоритму 
Рамера-Дугласа-Пекера: DouglasPeucker( ).C A  

5. Отбраковка контуров объектов из C  по ряду критери-
ев, включая анализ площади, оценку симметрии и схожести 
формы контура с прямоугольной: Filter( , ).C C q   

6. Оценка контрастности объектов C  и резкости их 
границ с занесением углов объектов с наибольшим зна-
чением автокорреляционной функции в список харак-
терных. 

На рис. 6 изображены промежуточные результаты 
основных этапов алгоритма. 

Эксперименты показали, что доля ошибок первого 
рода на городских сюжетах составляет 2-11 % и не бо-
лее 14 % – на прочих. Примечательно, что и вне городов 
детектируются искусственные объекты – частные дома, 
навесы, бассейны, хозяйственные постройки (рис. 7). На 
специально отобранных сюжетах с полным отсутствием 
техногенных объектов (тайга) формирование ОТМ не 
происходит. 

Гибридный  алгоритм  детектирования.  В  соответ- 
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        а)                                  б)                        в)  

 
      г)                                  д)                        е)  

Рис. 7.  Результаты алгоритма на основе контурного анализа: характерные объекты в (а-в) и вне (г-е) городов 

ствии с результатами экспериментов для автоматиче-
ского формирования ОТМ предложен гибридный алго-
ритм детектирования характерных объектов, позволя-
ющий объединить сильные стороны нескольких детек-
торов. На первом этапе осуществляется детектирова-
ние на изображении B  характерных объектов с помо-
щью предложенного выше алгоритма на основе анализа 
контуров. Далее производится оценка распределения 
сформированного множества объектов по площади 
участка суши земной поверхности, соответствующего 
территории маршрута съемки. В случае, если количе-
ство характерных объектов на некоторых фрагментах 

1 2, ,...B B  признается недостаточным (обычно вне насе-
ленных пунктов), эти фрагменты поступают на вход де-
тектора на основе DoG, а извлечённые характерные 
объекты дополняют результирующее множество. 

Алгоритм структурирования характерных объектов 
КА высокого разрешения осуществляют съемку кон-

кретных участков земной поверхности по заявкам по-
требителей, в результате чего частота обработки изоб-
ражений различных регионов существенно различается. 
В то же время для успешного контроля и уточнения гео-
дезической привязки ОТМ должны равномерно покры-
вать сушу с шагом, меньшим полосы захвата съемочно-
го устройства. В связи с этим при создании новых ОТМ 
необходимо учитывать взаимное положение характер-
ных объектов, точность и плотность покрытия региона 
уже существующими ОТМ. С этой целью предлагается 
ввести регулярную сетку в системе координат ( , )   с 
помощью функций 

( )
( ) ,i Ri

L
 


    

  
( 2)

( ) ,i Ri
L

 


    
  

где ( , )i i   – геодезические координаты i-го характерно-

го объекта в радианах, ( ),i  ( )i  – координаты соот-

ветствующей ячейки, L  – размер стороны ячейки в мет-
рах на экваторе. 

Алгоритм структурирования на этапе добавления но-
вых ОТМ состоит из следующих шагов. 

1. Формируем множество индексов уникальных яче-
ек, в которых расположены характерные объекты: 
{ : {1, }

( ) ( ) ( ) ( )}.
z

i j i j

v z I i j

v v v v   

   

      
 

2. Выбираем в каждой ячейке zv  не более ( )zq   
объектов, наиболее удаленных друг относительно друга 
и от уже существующих в покрытии ОТМ. Определение 

( )q  задает максимальное количество ОТМ, которое 
может быть добавлено в одну ячейку регулярной сетки. 
С учётом того, что площадь ячейки в метрах уменьшает-
ся с приближением к полюсам, будем нормировать мак-
симальное количество ОТМ в зависимости от широты: 

0( ) / sec ,q q      где 0q  – количество ОТМ в одной 
ячейке на экваторе. 

3. Формируем на основе выбранных объектов ОТМ и 
заносим их в покрытие. 

Для вычислительно эффективной программной реа-
лизации шага 2 необходимо задействовать структуру 
данных, обеспечивающую  асимптотически быстрый  по- 
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иск ближайших соседей. Для этого используем двумер-
ное двоичное дерево поиска, построенное в простран-
стве ( , )   [16]. 

Заключение 

Рассмотренное в статье алгоритмическое обеспече-
ние комплекса автоматического формирования ОТМ 
программно реализовано и отработано на панхромати-
ческих изображениях КА серии «Ресурс-П». Практиче-
ское использование комплекса предусмотрено при по-
токовой обработке информации от планируемых к за-
пуску КА «Ресурс-ПМ». Высокая унификация предло-
женных алгоритмов позволяет также формировать ОТМ 
по данным КА «РБКА» и «Аист-2Т». 

Дальнейшие исследования в этой области авторы 
связывают с разработкой сервисных средств актуали-
зации покрытия ОТМ, обеспечивающих замещение ме-
нее точных ОТМ более точными, созданием сезонных 
слоёв ОТМ, повышением надёжности опорных данных с 
учётом рекомендаций, получаемых от комплекса полу-
чения выходных информационных продуктов. 
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