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Рассматривается адаптивная коррекция сигналов как решение 
обратной некорректной задачи. Данная задача сводится к уравнению 
типа свертки, а для его решения используется метод регуляризации 
Тихонова. Оператор и правая часть уравнения известны с погрешно-
стью. Для выбора параметра регуляризации предложен метод, за-
ключающийся в минимизации отклонения фазовых значений неиз-
вестных передаваемых символов. Для его реализации использован 
метод максимального правдоподобия. Представлены результаты 
численных экспериментов. 
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APPLICATION OF THE MAXIMUM LIKELIHOOD METHOD FOR EQUALIZER 
OPTIMIZATION BASED ON THE REGULARIZATION METHOD 

Maslakov M.L.  
Adaptive signal correction as a solution to an inverse ill-posed problem is considered in work. This problem is reduced to a convolu-
tion-type equation, and to solve it, the Tikhonov regularization method is used. The operator and the right-hand side of the equation 
are known with an error. To choice a regularization parameter, a method is proposed that involves minimizing the deviation of the 
phase values of unknown transmitted symbols. The maximum likelihood method was used for realization it one. The results of nu-
merical experiments are presented. 
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Введение 

В статье рассматривается задача выравни-
вания частотной характеристики канала связи с 
ограниченной полосой частот. Данная задача 
возникает при адаптивной коррекции сигналов переда-
ваемых через нестационарные замирающие каналы 
связи, в которых наблюдаются межсимвольная интер-
ференция [1]. Для выравнивания характеристик канала 
применяют эквалайзеры [2]. Процедуру расчета коэф-
фициентов эквалайзера можно рассматривать как ре-
шение обратной задачи [3, 4, 5]. 

Задача адаптивной коррекции сигналов сводится к 
решению интегрального уравнения типа свертки перво-
го рода, которое можно записать в операторном или 
матричном виде [5, 6] 

,Hs u  (1) 

где ,m nR m n H  – матрица коэффициентов импуль-

сной характеристики канала, nRs  – вектор отсчетов 
передаваемого сигнала, mRu  – вектор отсчетов при-
нятого сигнала. 

Вектор u  представляет собой результат измерений 
на фоне белого гауссовского шума, т.е. 

, u u ξ  (2) 
где u  – точные значения вектора отсчетов принятого 
сигнала, ξ  – аддитивные белый гауссовский шум с ну-

левым средним и дисперсией 2
 . 

С учетом зашумленности правой части (2), а также 
того, что в общем случае матрица H  в общем случае 
может быть плохообусловленной, задача (1) является 
некорректно поставленной (см. подробнее в [6, 7]). Для 

решения задачи (1), часто, применяют регуляризирую-
щие алгоритмы [5, 7, 8]. Одной из ключевых подзадач 
при этом является выбор параметра регуляризации, 
решению которой посвящена данная работа [8, 9]. 

Матрица H  состоит из коэффициентов импульсной 
характеристики канала ( ),h t  причем полагаем что 

( ) 0, 0,h t t   (3) 

( )h t dt




  . (4) 

Таким образом, матрица H  имеет вид: 

0 1 1

0 1 1

0 1 1

0 0
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0
0 0

M

M

M

h h h
h h h

h h h







 
 
 
 
 
 

H

 
 

  
 

. (5) 

Коэффициенты матрицы H  на практике получают из 
решения уравнения (1) путем передачи тестового сигна-
ла и получении отклика на него (см. [2, 3, 8]). Таким об-
разом, H  в общем случае является регуляризирован-
ным решением [5], т.е. .H  При этом 

max ,  HH H   (6) 

где H  – точные значения коэффициентов импульсной 
характеристики канала. 

Точные оценки 2
ξ  и H  отсутствуют. В этом случае 

для выбора параметра регуляризации применяют раз-
личные эвристические методы, описание и сравнитель-
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ный анализ некоторых из них приводится, например, 
в [9-13]. Применение конкретного метода определяется 
особенностью постановки решаемой задачи. 

В данной работе используется метод выбора пара-
метра регуляризации, основанный на минимизации от-
клонения фазовых значений принимаемых корректиру-
емых символов [8]. Этот метод учитывает специфику 
задачи адаптивной коррекции для случая фазоманипу-
лированных сигналов. Для реализации данного метода 
предлагается использование метода максимального 
правдоподобия. 

Идея метода выбора параметра регуляризации 

Вектор передаваемого информационного сигнала S  
представляет собой отсчеты фазоманипулированного 
одночастотного сигнала вида 

0
1

( ) cos( ( )) ( ( 1) ),

[0; ),

N

m sym
n

sym

s t A t n p t n T

t NT


   



  
 (7) 

где N  – количество передаваемых символов, A  – ам-
плитуда передаваемого сигнала, 0  – несущая частота, 

( ), 1...m n n N  – фазы передаваемых символов, symT  – 

длительность символа, ( )p t  – импульсная функция вида 

1, [0; ),
( )

0, [0; ).
sym

sym

t T
p t

t T
  

 

Последовательность ( ), 1...m n n N  соответствует 

информационной последовательности бит ( ),mb n n   
1... .N  При этом для различной позиционности фазо-

вой модуляции (ФМ) определенному набору бит соот-
ветствует строго определенное значение фазы [14]: 

   0;1 0;m mb      – для двухпозиционной ФМ 

(BPSK); 

  300;01;11;10 0; ; ;
2 2 2m mb       

 

     – для 

четырехпозиционной ФМ (QPSK); 
и т.д. с учетом кода Грея [15]. 

В соответствии с [8] необходимо осуществить демо-
дуляцию откорректированного информационного сигна-
ла, определяемого вектором ,s  являющегося регуля-
ризированным [5] решением уравнения (1), которое пре-
образуется к форме: 

.H s u  (8) 

Здесь H  – матрица вида (5) элементы которой по-
лучены при передаче тестового сигнала и решении 
уравнения (1) относительно коэффициентов импульс-
ной характеристики. 

На выходе демодулятора получим последова-
тельность значений фаз принятых символов 

 ( , ) ; ,m n       1...n N  и соответствующую по-

следовательность бит ( , ), 1... .mb n n N  

Для выбора параметра регуляризации необходимо 
минимизировать функционал, представляющий собой 
количество битовых (или символьных) ошибок 

 
1

( ) ( ) ( , ) ,
N

m m
n

q b n b n


    (9) 

где   – знак сложения по модулю два. 
Однако информационная последовательность бит 

( ), 1...mb n n N  неизвестна, что не позволяет воспользо-
ваться напрямую выражением (9). Однако если вместо 
самой последовательности бит ( , )mb n   производить 

анализ последовательности фаз символов ( , ),m n   т.е. 
осуществить переход от схемы случайных событий к 
схеме случайных величин, то можно использовать аль-
тернативный функционал, который обсудим далее. 

Аргумент минимума этого функционала должен соот-
ветствовать минимуму (9). Заметим, что при увеличении 
N  (а вообще говоря, устремлении N   ) величина 

( ) ,q
N


 (10) 

есть оценка вероятности ошибки на бит .P . 
В свою очередь известно [16], что вероятность ошиб-

ки на бит для, например, модуляции BPSK определяется 
выражением: 

   
2

0
2

1 , ; ,P W d


   




      (11) 

где 0 ( )W   – плотность распределения вероятностей 
фаз. 

Поэтому в [8] вместо (9) предлагается минимизиро-
вать дисперсию полученной выборки фаз ( , ),m n   в 
результате приходим к поиску минимума следующего 
функционала: 

 2

0
arg min ( )opt 

 
   . (12) 

Таким образом, задача выбора параметра регуляри-
зации сводится к статистическому анализу регуляризи-
рованного решения некорректной обратной задачи. От-
метим, что некоторые приложения применения стати-
стического подхода для обработки данных при решении 
обратных задач представлены в [17]. 

Рассмотрим далее способы реализации рассмотрен-
ного метода. 

Применение метода максимального правдоподобия 

Выбор параметра регуляризация по абсолютным 
значениям фаз 

Пусть K  – объем передаваемого алфавита возмож-
ных символов. Обозначим вероятность соответствующего 
символа как , 1... .k

mP k K  Тогда плотность вероятности 
фаз откорректированного сигнала, определяемого векто-
ром ,s  в общем случае определяется выражением 

1

( ) ( ),
K

k
K m k

k

W P W


   (13) 

где ( )kW   – плотность вероятности фазы возможного 

k -го символа. 
Обычно при передаче случайной информации боль-

шого объема вероятность символов полагают одинако-
вой, т.е. 
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1 , 1...k
mP k K

K
  . (14) 

Возможные значения фаз символов   расположе-

ны равномерно на окружности в соответствии с исполь-
зуемой позиционностью модуляции. 

Тогда плотность вероятности фазы откорректиро-
ванного сигнала для случая сигналов BPSK можно за-
писать в форме 

 2 0 0
1 1( ) ( ) ( ), ; ,
2 2

W W W            (15) 

аналогично, для случая QPSK 

 

4 0 0

0 0

1 1( ) ( ) ( )
4 4 2

1 1( ) ( ), ;
4 4 2

W W W

W W

   

     

  

     
 (16) 

и т.д. 
Плотность вероятности фазы 0 ( )W   определяется 

нормальным угловым законом распределения (см. 
[18, 20]) 



2

0

2

2 2

1( ) exp
2 2

1 2 cos( )

1 cos( ) cos ( )erfc exp ,
2 22

W
 

   
 

   

  
         






 

   

 (17) 

где   22erfc exp( )
x

x t dt


 
 – дополнительная функ-

ция ошибок, а параметр   пропорционален отношению 
сигнал/шум, т.е. ~ SNR . 

Для примера на рис. 1 показаны плотности распре-
деления фазы 2 ( )W   и 4 ( )W   для различных значений 
параметра .  

 
Рис. 1. Плотности распределения фазы  

для BPSK – 2( )W   и QPSK – 4( )W   

Отметим, что 
2

2

1 ,
e




 (18) 

где 
2 .e  s s  (19) 
С учетом (18) следует, что минимум в выражении 

(12) достигается при максимальном значении ,  и тогда 
приходим к следующему выражению 

0
arg(max ( ))opt 

  


 . (20) 

Для нахождения оценки   по имеющейся выборке 

( , ), 1...m n n N   и, соответственно, его максимума 
применим метод максимального правдоподобия. Функ-
цию правдоподобия можно записать в форме 

    
1

( , )
N

K m
n

L W n


    . (21) 

Отметим, что при численной реализации произведе-
ние в (21), как правило, меняют на сумму логарифмов. 

В результате оценку   в выражении (20) получим 
следующим образом: 

0
ˆ ( ) arg(max ( ( )))L


   


 . (22) 

Выбор параметра регуляризации по дифференци-
альным значениям фаз 

Рассмотрим получаемые оценки фаз символов регу-
ляризированного решения уравнения (8). Каждое значе-
ние фазы можно представить в форме 

( , ) ( ) ( , ),m mn n n        (23) 

где ( , )n   – ошибка измерения фазы. 

Тогда разность двух соседних фаз есть 
 

 
   

 

( , ) ( 1) ( 1, )

( ) ( , )

( 1) ( ) ( 1, ) ( , )

( ) ( 1, ) ( , )

d m

m

m m

d

n n n

n n

n n n n

n n n

    

  

      

   





 

 

    

  

     

    

. (24) 

Значения ( )d n  для ФМ различной позиционности 

будут принимать те же значения, т.е.  0;  – для BPSK, 

30; ; ;
2 2 2

   
 

    – для QPSK и т.д. Иными словами от 

абсолютной ФМ переходим к разностной ФМ [14]. Соот-
ветствующие вероятности фаз символов (14) будут так-
же равны, а значит плотность вероятности разности фаз 
откорректированного сигнала, аналогично (13), будет 
иметь вид 

1

1( ) ( )
K

d
K d k d

k

W W
K 

   . (25) 

Тогда плотность вероятности разности фаз откоррек-
тированного сигнала для случая сигналов DBPSK можно 
записать в форме 

 
0 0

1 1( ) ( ) ( ),
2 2

; ,

d d d
K d d d

d

W W W  

 

   

  
 (26) 

аналогично, для случая DQPSK 

 

0 0

0 0

1 1( ) ( ) ( )
4 4 2

1 1( ) ( ), ;
4 4 2

d d d
K d d d

d d
d d d

W W W

W W

   

     

  

     
 (27) 

и т.д. 
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Плотность вероятности разности фаз описывается 
распределением Мизеса и определяется выражением 
[18, 19] 

 0
0

1( ) exp cos( ) ,
2 ( )

d
d dW

I
  

 
 (28) 

где 0 ( )I   – модифицированная функция Бесселя пер-
вого рода нулевого порядка (см. [18]). 

Для примера на рис. 2 показаны плотности распре-
деления фазы 2 ( )dW   и 4 ( )dW   для различных значе-
ний параметра  . 

 
Рис. 2. Плотности распределения разности фаз  

для DBPSK – 2 ( )d
dW   и DQPSK – 4 ( )d

dW   

Для нахождения максимального значения   по 

имеющейся выборке ( , ), 1... 1d n n N    также приме-
ним метод максимального правдоподобия. В этом слу-
чае функция правдоподобия есть 

     
1

1

,
N

d
d K d

n

L W n




    . (29) 

Значение параметра регуляризации opt  можно 

определить из (20), где в качестве оценки   подставить 
оценку 

     0
ˆ arg max dL





    . (30) 

Сравнительный анализ данных подходов 

Дисперсия разности фаз ( , )d n   больше диспер-

сии фазы ( , ),n   что связано со слагаемым 

( ( 1, ) ( , ))n n       в выражении (24). Таким обра-
зом, использование абсолютных значений фаз позволя-
ет получить более надежную оценку .  Однако исполь-
зование дифференциальных фаз может быть предпо-
чтительнее в некоторых случаях. 

Пусть оценка значения фазы ( , )m n   смещена, т.е. 

( , ) ( ) ( , ) ( ),m m sn n n n         (31) 

где ( )s n  – смещение фазы. 

Смещение фазы может возникнуть, например, при 
ошибке тактовой синхронизации. При этом значения 

( ), 1...s n n N  – неизвестны. В этом случае примене-
ние моделей (15) или (16) приведет к неточной оценке 

,  получаемой из (21). 

Рассмотрим подробно выражение для разности фаз 
в этом случае 

 
 
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


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 

   

   

    

 

. (32) 

Часто на практике смещение фазы является констан-
той (что можно полагать для относительно небольшого 
сегмента или интервала времени), т.е. можно полагать 

( 1) ( ) , 1... 1s s sn n const n N        . (33) 
Тогда при использовании разности фаз смещение 

фазы s  компенсируется и от (32) приходим к выраже-
нию (24), после чего можно воспользоваться моделью 
(25). 

Очевидно, что при условии (33) можно оценить дан-
ное смещение как математическое ожидание [18] и ком-
пенсировать его, в результате чего функция правдопо-
добия вместо (21) примет форму 

       
1

, , , ;
N

K
n

L W n n


            . (34) 

Вычислительная процедура поиска максимума функ-
ции правдоподобия (34) при этом значительно усложня-
ется. 

Допустим, что ( )s n  связано с доплеровским сме-
щением частоты, либо расстройкой опорного генератора 
приемника. Тогда 

( )s s symn n T  , (35) 

где s  – значение доплеровского сдвига частоты. 

В этом случае от (32) приходим к выражению 

 
( , ) ( )

( 1, ) ( , ) .
d d

s sym

n n
n n T
 

    

  

    
 (36) 

Слагаемое s symT  также внесет определенную по-

грешность при оценке .  Однако при использовании 

абсолютных значений фаз ( , )n   смещение ( )s n  

будет расти от символа к символу на величину ,s symT  

что существенно осложняет использование выраже-
ний (21) и (34). 

Для дифференциальных значений фаз ( , )d n   – 

значение .s symT const  Тогда, аналогично (34), выра-
жение для функции правдоподобия при использовании 
разности фаз имеет вид 

      
1

1

, ( , ) , ;
N

d
K d

n

L W n




            . (37) 

Численный эксперимент 

В этом разделе представлены результаты численно-
го эксперимента при передаче неизвестного ФМ сигнала 
через замирающий канал с межсимвольной интерфе-
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ренцией, возникшей из-за многолучевого распростране-
ния. В качестве модели канала выбрана модель Ват-
терсона [21], используемая при моделировании коротко- 
волновых каналов связи [22]. 

При моделировании были заданы следующие пара-
метры модели канала: 2 луча, интервал между лучами 
2 мс, замирания каждого луча по закону Релея, исполь-
зуемая полоса частот 3 кГц. Параметры передаваемого 
сигнала: несущая частота сигнала 0 02 f   при 

0f  = 1,8 кГц; длительность символа 0,625symT   мс. 

Частота дискретизации 16 кГц. 
На рис. 3-4 показаны типичные зависимости количе-

ства ошибок ,q  масштабированные функции правдопо-
добия для абсолютных и дифференциальных фаз, а 
также оценки значения   для различных значений от-
ношения сигнал/шум SNR  во входных данных получен-
ные для BPSK сигналов. Количество передаваемых 
символов 15.N   

Здесь и далее зависимости для количества битовых 
ошибок q  получены по формуле (9) в предположении 
известной последовательности бит, что имеет место 
быть в рамках моделирования (эксперимента). Важно 
отметить, что так, как число бит в пределах анализиру-
емой последовательности конечно, другими словами 

рассматривается сегмент относительно небольшой дли-
ны, то q   - натуральным числам, в свою очередь  
   - является вещественным. Это приводит к тому, 
что достаточно определить ,opt  принадлежащее неко-

торому диапазону при котором min .q   Доказательство 
данного утверждения, сформулированного в виде лем-
мы, приведено в работе [8]. 

На рис. 5 показаны аналогичные кривые для сигна-
лов QPSK при значении 10SNR   дБ и 15.N   

На рис. 3-5 (a и b) демонстрируется, что хотя макси-
мумы функционалов соответствуют различным значени-
ям ,  все они могут быть приняты как .opt  Вместе с 
тем на рис. 3-4 (c) демонстрируется, что данный метод 
может давать и ошибочные значения .opt   

Кроме того стоит отметить наличие локальных мак-
симумов, что существенно ограничивает выбор и реали-
зацию алгоритма оптимизации при поиске экстремума. 
Анализ таких алгоритмов может быть рассмотрен в от-
дельной работе. 

Как видно из приведенных зависимостей данный ме-
тод, как любой эвристический метод, может давать оши-
бочное значение параметра   в качестве оптимально-
го, но в любом случае не худшее, что демонстрируется 
на рис. 3-5 (с). 

            
 a) b) c) 

Рис. 3. Типичные зависимости количества ошибок q  (черная); масштабированные функции правдоподобия  
для абсолютных фаз (синяя) и дифференциальных фаз (бирюзовая); оценки значения   для абсолютных фаз (красная)  

и дифференциальных фаз (малиновая) для BPSK сигналов при 10SNR   дБ 

             
 a) b) c) 

Рис. 4. Типичные зависимости количества ошибок q  (черная); масштабированные функции правдоподобия  
для абсолютных фаз (синяя) и дифференциальных фаз (бирюзовая); оценки значения   для абсолютных фаз (красная)  

и дифференциальных фаз (малиновая) для BPSK сигналов при 5SNR   дБ 
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 a) b) c) 

Рис. 5. Типичные зависимости количества ошибок q  (черная); масштабированные функции правдоподобия для абсолютных 
фаз (синяя) и дифференциальных фаз (бирюзовая); оценки значения   для абсолютных фаз (красная) и дифференциальных 

фаз (малиновая) для QPSK сигналов при 10SNR   дБ 

             
 a) b) c) 

Рис. 6. Типичные зависимости количества ошибок q  (черная); масштабированные функции правдоподобия для абсолютных 
фаз (синяя) и дифференциальных фаз (бирюзовая); оценки значения   для абсолютных фаз (красная) и дифференциальных 

фаз (малиновая) для BPSK сигналов при 10SNR   дБ и 20sf   Гц 

На рис. 6 показаны аналогичные зависимости для 
BPSK сигналов при значении 10SNR   дБ, 15N   и 
значении допплеровского сдвига 20sf   Гц ( 2 ).s sf   

Можно отметить, что использование дифференци-
альных фаз для получения оценки opt  дает меньшую 
вероятность ошибки данной оценки, что подтверждает 
утверждения сделанные при сравнительном анализе 
данных подходов.  

Далее было проведено 20000M   экспериментов и 
построены зависимости вероятности ошибки на бит от 
отношения сигнал/шум (ОСШ) при коррекции методом 
регуляризации Тихонова с выбором значения парамет-
ра регуляризации рассматриваемым методом для аб-
солютных или дифференциальных фаз. 

Вероятность ошибки вычислялась из выражения 

1

1 ( , )
M

l

P q l
MN 

   . (38) 

Результаты моделирования для BPSK и QPSK сиг-
налов показаны на рис. 7.  

Нижняя граница на рис. 7 получена эксперименталь-
но при условии, что последовательность ( ), 1...mb n n N  
в каждом из M  опытов известна точно. 

Аналогичные кривые для BPSK и QPSK сигналов 
при значении доплеровского смещения частоты 

20sf   Гц показаны на рис. 8. 

 
 a) b) 

Рис. 7. Зависимости вероятности ошибки на бит  
от ОСШ для сигналов BPSK (a) и QPSK (b) при выборе 

 значения параметра регуляризации рассматриваемым  
методом при использовании абсолютных фаз (синий);  

дифференциальных фаз (красный); нижняя граница (черный) 

Отметим, что длительность информационных после-
довательностей N  при моделировании зависимостей 
вероятности ошибки на бит составляла 15, 30 и 50 BPSK 
и QPSK символов. При этом объем выборки практически 
не влиял на эффективность выбора значения параметра 
регуляризации. 

Отметим, что в случае 0sf   обычно осуществляют 
предварительную (иногда «грубую») компенсацию дан-
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ного смещения перед процедурой демодуляции [22]. 
Это позволит уменьшить значения вероятности ошибки 
на бит, приведенные на рис. 8. 

 
 a) b) 

Рис. 8. Зависимости вероятности ошибки на бит  
от ОСШ при 20sf   Гц для сигналов BPSK (a) и QPSK (b)  

при выборе значения параметра регуляризации  
рассматриваемым методом при использовании абсолютных 

фаз (синий); дифференциальных фаз (красный);  
нижняя граница (черный) 

Заключение 

Предложенный метод обеспечивает выбор опти-
мального значения параметра регуляризации в задаче 
адаптивной фильтрации при коррекции искаженных сиг-
налов с ФМ различной позиционности при неизвестной 
модулирующей последовательности. При этом получе-
ние оценок уровня шума во входных данных и зашум-
ленности ядра интегрального уравнения в отличие от 
большинства известных методов не требуется. 

Дополнительно отметим, что при поиске максиму-
ма (37) также может быть получена оценка доплеров-
ского смещения частоты. 
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