
Цифровая Обработка Сигналов №2/2024 

 
 

57

Рассмотрены вопросы обработки OFDM-сигнала при его пере-
даче по нестационарному радиоканалу и проведении временной син-
хронизации. Введены математические модели рассматриваемых 
информационных сигналов. Для выделения границ интервалов ор-
тогональности OFDM-сигнала на приемной стороне предлагается 
метод, основанный на применении гармонического вейвлет-
преобразования и анализа вейвлет-коэффициентов. В силу особен-
ностей сигналов, а также свойств гармонических вейвлетов выде-
ление границ интервалов ортогональности достигается с макси-
мально возможной точностью. Применение гармонических вейвле-
тов при обработке OFDM-сигналов позволяет повысить информа-
ционную скорость передачи на 20-30 %. 
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Введение 

Широкое использование OFDM-сигналов (Or-
thogonal frequency-division multiplexing – мульти-
плексирование с ортогональным частотным раз-
делением каналов) для передачи и обработки 
информации в условиях нестационарного радиоканала 
предполагает решение ряда технологических задач, 
таких как частотная синхронизация, временная синхро-
низация и др. В условиях отсутствия или невозможности 
использования специальных синхронизирующих сигна-
лов, что часто встречается на практике, эти задачи ре-
шаются путем обработки информационных сигналов [1]. 

Широкое использование для передачи и дальней-
шей обработки информационных сигналов получили 
методы временной синхронизации на основе вычисле-
ния взаимно корреляционной функции, когда OFDM-
сигнал содержит циклический префикс, представляю-
щий собой периодическое продолжение группового сиг-
нала. Однако в этом случае непроизводительно расхо-
дуются временные ресурсы канала связи, что приводит 
к снижению информационной скорости передачи и, как 
следствие, к увеличению времени передачи. Также из-
вестен и широко используется спектральный способ 
синхронизации, требующий для своей реализации 
наличия свободных частот, что, в свою очередь, приво-

дит к неэффективному использованию частотного ре-
сурса [2]. 

Развитие теории цифровой обработки сигналов, в 
частности, применение вейвлет-преобразования и ос-
нованных на нем вычислительных методов и алгорит-
мов, открывает новые возможности для решения задачи 
временной синхронизации при отсутствии необходимо-
сти наличия циклического префикса и свободных от 
излучения частот в полосе, занимаемой OFDM-
сигналом. Являясь адаптивным подходом в цифровой 
обработке сигналов, вейвлет-преобразование позволит 
с высокой точностью анализировать и обрабатывать 
временные процессы, в частности, выделять их грани-
цы, что является на сегодняшний день актуальным при 
передаче и обработке информационных сигналов в 
условиях нестационарного радиоканала. 

В статье будет рассмотрена временная синхрониза-
ция [3]. При этом будут использованы математические 
модели сигналов, когда шумовая компонента не учиты-
вается. Это связано с тем, что целью является опреде-
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ление структурного подхода к решению задачи вре-
менной синхронизации с помощью гармонических 
вейвлетов и гармонического вейвлет-преобразования. 

Ниже представлены следующие основные положе-
ния статьи: 

Введены математические модели информационных 
OFDM-сигналов в задачах передачи информации в не-
стационарном радиоканале; 

Описаны особенности рассматриваемых информа-
ционных OFDM-сигналов и представлена частотно-
временная диаграмма информационного сигнала; 

Приведены основные аналитические соотношения 
для вейвлет-преобразования в базисе гармонических 
вейвлетов. Показано, что скорость передачи информа-
ции при использовании гармонических вейвлетов для 
обработки OFDM-сигналов повышается на 20-30 %; 

Предложен метод определения границ интервалов 
ортогональности OFDM-сигнала на основе гармониче-
ского вейвлет-преобразования и анализа рассчитанных 
вейвлет-коэффициентов; 

Результаты и преимущества предложенного метода 
проиллюстрированы вычислительным экспериментом. 

Актуальность рассматриваемой тематики 

Большинство беспроводных радиоканалов являются 
нестационарными. Так, широко используемые коротко-
волновые радиоканалы (КВ-радиоканалы) позволяют 
передавать информационные сигналы на большие рас-
стояния до нескольких тысяч километров без промежу-
точных узлов, используя для этой цели ионосферный 
канал. Сигнал на выходе ионосферного канала являет-
ся нестационарным. Помимо этого, из-за движения 
ионосферной плазмы на приемной стороне наблюдает-
ся допплеровский сдвиг сигнала. Для выбора оптималь-
ных параметров передачи необходимо осуществлять 
статистический анализ характеристик сигнала на выхо-
де КВ-канала.  

КВ-радиоканал обладает весьма ограниченным ча-
стотно-временным ресурсом, поэтому использование 
специальных зондирующих и тестовых сигналов для 
определения статистических характеристик радиокана-
ла приводит к уменьшению пропускной способности 
радиоканала, а также значительному снижению показа-
телей достоверности в случае неприема служебных 
сигналов на интервалах глубокого замирания, поэтому 
актуальной является задача определения функции ав-
токорреляции, функции когерентности в частотно-
временной области и др. Также нестационарными яв-
ляются радиоканалы систем подвижной радиосвязи. 

Таким образом, актуальной задачей является раз-
работка методов установления частотно-временного 
синхронизма для его применения в составе систем пе-
редачи информации по нестационарному радиоканалу. 
В качестве математического аппарата для решения 
данной задачи актуальным является использование 
вейвлет-преобразования, поскольку данный адаптив-
ный метод обеспечивает высокую точность решения 
задач, связанных с обработкой сигналов [4, 5]. 

Описание рассматриваемой задачи 

Информационный сигнал в задаче передачи и обра-
ботки информации в условиях нестационарного радио-
канала может быть описан следующей математиче-
ской моделью: 

  
1

( ) ( )

1 0
( ) cos

L N
l l

k k k k
l k

s t c t t


 

       (1) 

где l  – номер интервала ортогональности информаци-
онного сигнала (обработка информационного сигнала 
на приемной стороне осуществляется по интервалам 
заданной длительности T ), L  – общее число интерва-
лов длительностью T  излучаемого сигнала, N  – об-
щее количество частот многочастотного сигнала, на 
которых происходит излучение, k  – k-я субчастота 

излучения, kt  – временная задержка k-го луча (k-й 

гармоники сигнала) в канале, ( )l
kc  – амплитуда гармони-

ки на k-й субчастоте на интервале ортогональности с 
номером l . Сигнал излучается интервалами длитель-
ностью ,T  при этом все частотные составляющие сиг-
нала на частотах k  излучаются одновременно. 

Сигнал ( )s t  называют также групповым сигналом в 
силу сложения с разными временными задержками, 
амплитудами и фазами гармонических компонент.  

Параметры ( ){ }l
kc  и ( ){ }l

k  соответствуют k-й часто-

те излучения и l-му интервалу ортогональности сигнала 

на приемной стороне. Начальные фазы ( ){ },l
k  соот-

ветствующие l-у интервалу ортогональности, являются 
случайными величинами, зависящими от передаваемо-
го символа, и изменяются при переходе от одной гар-
моники к другой. Для каждого излучаемого фрагмента 
математическая модель (1) является аналогом ряда 
Фурье периодического сигнала. 

Частота k-й гармоники излучения кратна периоду 
дискретизации по частоте и определяется следующими 
соотношениями: 

k k   , 
2
T

 


 . 

Часто более удобно представление информацион-
ного сигнала в виде: 

     
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( ) cos sin , , ,
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где ( ) ( ){ , }l l
k ka b  – набор информационных параметров, 

который также меняется при переходе от одного интер-
вала ортогональности длительностью T  с номером l  к 
другому последующему интервалу с номером 1,l   
функция временного окна 1( , , )k kt t t   определяется 
выражением: 

1 1( , , ) ( ) ( )k k k kt t t E t t E t t      , 
где ( )E t  – единично-ступенчатая функция, определяе-
мая соотношением: 

  1, 0
0, 0

tE t t
  . 
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На приемной стороне все частоты претерпевают 
сдвиг 

, 0, 1,kkf f f k N     

а информационный сигнал ( )s t  описывается математи-
ческой моделью: 

( )s t   (3)

   
1

( ) ( )
зап, зап,

0
cos ( ) sin ( ) ,

N
l l

k kk k k k k k
k

a t b t




             

где k k    , множитель k  отвечает за частотно-

селективные свойства радиоканала, зап,k  – значение 

задержки для спектральной составляющей на частоте 

k  в выражении (3).  
Частотно-временная диаграмма информационного 

сигнала, соответствующего математической модели (2), 
представлена на рис. 1. На данной диаграмме парамет-
ры 1 1{ , },k ka b  2 2{ , },k ka b  3 3{ , },k ka b … означают инфор-

мационные параметры сигнала ( k  – номер частоты 
дискретной гармоники) для соответствующего интерва-
ла длительностью .T  Пунктирной линией показаны за-
щитные интервалы, а величины нf  и вf  означают ниж-
нюю и верхнюю граничные частоты передаваемого и 
затем обрабатываемого информационного сигнала. На 
рис. 1 параметр зT  означает ширину защитного интер-

вала, 0T  – величина интервала ортогональности (вре-
менной интервал, на котором гармоники являются орто-
гональными), f  – шаг по частоте – расстояние между 
двумя соседними частотами гармонических функций 
(рассматривается случай эквидистантного расположе-
ния частот гармоник). Для величин f  и 0T  выполняет-

ся соотношение: 0 1.f T    

 
Рис. 1. Частотно-временная диаграмма  

информационного сигнала 

Защитный интервал необходим для того, чтобы он 
включал в себя задержки на временной оси, соответ-
ствующие каждой из компонент на k -й частоте. 

Величины { , }k ka b  представляют собой информаци-
онные пары (синфазно-квадратурные составляющие), 
на основе которых формируется передаваемый символ 
{ , }k k ka b  . 

На каждом интервале l  будет своя пара передава-
емых символов для каждой частоты k : 

Для 1-го интервала ( 1l  ): 
передаваемые параметры:  

(1) (1)
1 1,a b  – частота 1 ; (1) (1)

2 2,a b  – частота 2 ;  …. ;  
(1) (1),k ka b  – частота ;k  

Для 2-го интервала ( 2l  ): 
передаваемые параметры:  

(2) (2)
1 1,a b  – частота 1 ; (2) (2)

2 2,a b  – частота 2 ;  …. ;  
(2) (2),k ka b  – частота ;k  

Для l -го интервала: 
передаваемые параметры:  

( ) ( )
1 1,l la b  – частота 1 ; ( ) ( )

2 2,l la b  – частота 2 ;  …. ;  
( ) ( ),l l
k ka b  – частота .k  

На приемной стороне отсутствует информация о 
том, где расположены границы интервалов во времени, 
равные .kT  Эти границы должны быть определены с 
максимально возможной точностью для того, чтобы за-
тем провести демодуляцию. 

На приемной стороне известна длительность защит-
ного интервала, а также общая длительность сигнала, 
однако неизвестны моменты смены интервалов дли-
тельностью ,T  что как раз предлагается определять с 
помощью гармонического вейвлет-преобразования.  

Повышение скорости передачи можно проиллюстри-
ровать на таком примере. Возьмем часто применяемое 
на практике при передаче информационных сигналов 
значение 20T   мс, при этом интервал ортогонально-
сти 0 16T   мс, а защитный интервал з 4T   мс (длина 
защитного интервала определяется как разность значе-
ния T  и интервала ортогональности 0T ). При наличии 
защитного интервала информационная скорость со-
ставляет 1 20 мс 50V    симв/с. Если для определе-
ния временных границ применяется гармоническое 
вейвлет-преобразование, то защитный интервал не ис-
пользуется. В этом случае информационная скорость 
составит 1 16 мс 62,5V    симв/с. Таким образом, ско-
рость передачи возросла на 25 %, что является суще-
ственным результатом.  

Вейвлет-преобразование в базисе  
на основе гармонических вейвлетов  
(гармоническое вейвлет-преобразование)  

Гармонические вейвлеты представляют собой ба-
зисные функции, спектры которых имеют вид прямо-
угольной волны в заданном диапазоне частот [6-9]. На 
нулевом уровне ( 0)j   выражение для спектральной 

плотности [10] ( )W   базисного вейвлета имеет следу-
ющий вид, приняв фазу равной нулю [8]: 

1/ 2 , 2 4
( )

0, 2 , 4 .
W

 
   

   


   
  (4) 

Во временной области на основе использования об-
ратного преобразования Фурье (ОПФ) от (4) выражение 
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для базисной функции имеет вид ( 1) :i    
4 2

( ) .
2

i x i xe ew x
i x



 


  (5) 

Базисный вейвлет является комплекснозначным, как 
и само гармоническое вейвлет-преобразование, резуль-
тат вычисления которого имеет вещественную и мни-
мую части. 

Рассмотрим выражение для спектра базисного 
вейвлета, соответствующего произвольному j -у уров-
ню разложения и сдвигу на величину :p  

21 2 , 2 2 4 2( ) 2
0, 2 2 , 4 2 ,

j
i p

j j j

j j

eW





  
  



   
   

  (6) 

Аналогично тому, как это было сделано ранее, 
найдем ОПФ от (6): 

4 (2 ) 2 (2 )

(2 ) ,
2 (2 )

j ji x p i x p
j

j

e ew x p
i x p

 
 



 


  (7) 

где 0,j   | | .p    Из (6) следует, что гармонические 
вейвлеты имеют конечный (компактный) носитель 
[4,6,7] в частотной области и бесконечный носитель во 
временной области (носитель функции – интервал, где 
функция отлична от нуля). 

Для 1j    (соответствует масштабирующей функ-

ции) выражение для ( )W   имеет вид [6,8]: 

1 , 0 2
( ) 2

0, 0, 2 ,

i pe
W

   
  

  
 

  
  (8) 

откуда во временной области получаем 
2 ( ) 1( ) ,

2 ( )

i x pex p
i x p

 
 








  (9) 

где | | ,p    ( )x  – масштабирующая функция.  
Масштабирующая функция имеет самый грубый 

масштаб (самое грубое временное разрешение), а ба-
зисная функция с максимальным значением номера 
уровня разложения j  имеет самый тонкий масштаб 
(самое лучшее временное разрешение), что проиллю-
стрировано далее в табл. 1.  

Причина выбора именно такой масштабирующей 
функции (9) и базисных вейвлетов (7) состоит в том, что 
они образуют ортогональное множество, т.е. 

(2 ) (2 ) 0 , , , ( , 0)j rw x p w x s dx j p r s j r




     , (10) 

*(2 ) (2 ) 0

, , , ( , 0; ; ),

j rw x p w x s dx

j p r s j r r j s p





  

   

   (11) 

2| (2 ) | 1 / 2 .j jw x p dx




   (12) 

Для масштабирующей функции (9) справедливы 
аналогичные соотношения ортогональности. Кроме то-
го, масштабирующая функция и базисные вейвлеты 
также являются ортогональными. Вышеприведенные 

результаты говорят о том, что функции (2 )jw x k  и 

( )x p  образуют ортогональный базис. Функцио-

нальный ряд для некоторой функции ( )f x  по гармони-
ческим вейвлетам сходится в среднеквадратическом 
смысле при условии, что функция является квадратично 
интегрируемой. 

С учетом рассмотренных особенностей можно вы-
делить следующие основные свойства гармонических 
вейвлетов: 

Гармонические вейвлеты имеют компактный носи-
тель в частотной области, что эффективно при реше-
нии задачи локализации характерных особенностей 
сигналов в частотной области; 

Существуют и используются на практике быстрые 
алгоритмы вычисления вейвлет-коэффициентов и вос-
становления сигнала во временной области, основан-
ные на быстром преобразовании Фурье (БПФ). 

Вейвлет-коэффициенты гармонических сигналов 
при вычислении гармонического вейвлет-преобразова-
ния будут равны нулю или близки к нулю (с учетом вы-
числительных погрешностей), что позволит выделять 
фрагменты в OFDM-сигналах в вейвлет-области и за-
тем пересчитывать границы фрагментов (интервалов 
ортогональности) во временную область.  

Рассматриваемые OFDM-сигналы имеют локализа-
цию в частотной области, в связи с чем применение 
гармонического вейвлет-преобразования, обладающего 
локализационными свойствами в частотной области, 
является оправданным. Кроме того, на практике прихо-
дится зачастую обрабатывать сигналы большого объе-
ма (большой длины сигнальной выборки), и при этом 
быстрые вычислительные алгоритмы гармонического 
вейвлет-преобразования окажутся эффективными.  

Вычисление вейвлет-коэффициентов гармоническо-
го вейвлет-преобразования производится в соответ-
ствии с выражениями: 

, 2 ( ) *(2 ) ;j j
j pa f x w x p dx





 

 , 2 ( ) (2 ) ;j j
j pa f x w x p dx





   (13) 

, ( ) *( ) ;pa f x x p dx




    , ( ) ( ) .pa f x x p dx




    (14) 

Для вещественных функций ( )f x  данные коэффи-

циенты подчиняются условию  *
, , ,j p j pa a   *

, , .p pa a   
Представление функции в виде функционального ряда 
выполняется следующим образом: 

 
 

,,

,,
0

( ) ( ) *( )

(2 ) *(2 ) .

pp
p

j j
j pj p

j p

f x a x p a x p

a w x p a w x p





 

 

    

   



 

  
 (15) 

Таким образом, для нахождения коэффициентов 
вейвлет-разложения необходимо получить значения 
 , ,, ,, , , .j p pj p pa a a a  Вычисление вейвлет-коэффициен-
тов детально описано в [6, 7, 8]. Ключевым моментов 
является то, что для вычисления вейвлет-коэффици-
ентов переходят к октавной (блочной) модификации. 
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Таблица 1. Распределение вейвлет-коэффициентов по уровням разложения 

Номер уровня разложения j  Вейвлет-коэффициенты Количество вейвлет-коэффициентов 
-1 0a   1 
0 1a  1 
1 2 3,a a  2 
2 4 5 6 7, , ,a a a a  4 
3 8 15,...,a a  8 

………………………. ………………………. ………………………. 
j  12 2 1

,...,j ja a  
 2 j  

………………………. ………………………. ………………………. 
2,n   где 2logn M  / 4 /2 1,...,M Ma a   22n  

 
гармонического вейвлет-преобразования. Данная мо-
дификация позволяет получить конечный набор вейв-
лет-коэффициентов, а также физически реализуемые 
вейвлет-фильтры. Для вычисления используется двух-
этапный алгоритм на основе дискретного преобразова-
ния Фурье (ДПФ) [6].  

Распределение вейвлет-коэффициентов по уровням 
блочного гармонического вейвлет-разложения проил-
люстрировано в табл. 1. 

Определение границ процессов  
в информационном сигнале.  
Применение гармонических вейвлетов 

Выделение границ интервалов ортогональности в 
принятом информационном OFDM-сигнале (на прием-
ной стороне) называется сегментацией. Для задачи 
сегментации в качестве исходных данных выступает 
принимаемый информационный OFDM-сигнал. 

В результате сегментации получается сигнал, пред-
ставленный в виде упорядоченной во времени после-
довательности сегментов - участков конечной длины, 
выделенных по заданному алгоритму [11]. Найденные 
временные границы должны соответствовать моментам 
начала и окончания интервалов ортогональности в при-
нятом информационном сигнале. 

Формально задача сегментации формулируется 
следующим образом. Имеется сигнал ( ),s n  0,...,n   

1,M   где n  - номер отсчета сигнала, M  - общее ко-
личество отсчетов. Для удобства сигнал представляет-
ся конечным набором дискретных отсчетов. Сигнал 
можно представить совокупностью пар значений 
{ , ( )}.n s n  Для каждого временного отсчета ,i  удовле-
творяющего условию 0 1,i M    требуется устано-

вить, какая из двух альтернативных гипотез 0H  (нуле-

вая гипотеза) или 1H  (ненулевая гипотеза) является 

истинной. Гипотеза 0H  соответствует продолжению 

текущего сегмента. Гипотеза 1H  соответствует смене 
сегмента в момент времени .i  Ниже приведена фор-
мальная запись двух гипотез: 

0H : ( ),..., ( ),..., ( )s j s i s p  соответствует модели 1,T   (16) 
против 

1H : ( ),..., ( 1)s j s i   соответствует модели 1,T   (17) 

( ),..., ( )s i s p  соответствует модели 2 ,T   (18) 
где 0j   - граница предыдущего (по отношению к вы-
деляемому) сегмента, i  - левая граница нового сегмен-
та, точное местоположение которой требуется устано-
вить, p  - отсчет, соответствующий границе следующего 
сегмента после искомого, при этом 2 .p M   

В формулах (16) - (18) T  - семейство моделей, ха-

рактеризуемых вектором характеристик .  1T  - модель, 
соответствующая сегменту с началом в точке ,j  

2T  - модель следующего за искомым сегмента с нача-
лом в точке .i  В результате проведенной сегментации 
должны быть сформированы три множества:  

1 { }, 1,..., ,iV st i Seg   2 { }, 1,..., ,iV fn i Seg 

3 { }, 1,..., ,V i i Seg     (19) 

где Seg  - количество найденных сегментов, 1V  и 

2V - множества координат левых и правых границ сег-

ментов соответственно, 3V  - множество, содержащее 
вектора характеристик сегментов. 

Предлагаемый алгоритм сегментации (выделения 
границ интервалов ортогональности в принятом инфор-
мационном OFDM-сигнале) можно записать в виде сле-
дующей последовательности действий: 
Детальный анализ вычисленных вейвлет-
коэффициентов 

2( ), (log ) 1; ,..., 1
4 2q
M Mw m q M m     самого тонкого 

уровня гармонического вейвлет-разложения; 
Выделение участков с незначимыми вейвлет-
коэффициентами в вейвлет-области. 

Вейвлет-коэффициенты ( )qw m  полагаются незна-

чимыми, если они удовлетворяют условию: 

2( ) , (log ) 1;

( / 4) ... ( / 2) 1,
qw m q M

m M M

   

 
 (20) 

где   - величина с близким к нулю значением 
5 3( 10 ...10 ).     

По результатам сегментации в вейвлет-области 
формируется множество 1A  вейвлет-коэффициентов на 
самом тонком уровне разложения: 
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 1 0 1 1: ( ) , [ , ] ... [ , ] ...q j jA w m m n n n n       (21) 

где 0 1 1, ,..., , ,...j jn n n n   - границы сегментов в простран-

стве вейвлет-коэффициентов,   - символ объединения 
множеств значений. 

В противном случае, вейвлет-коэффициенты явля-
ются значимыми и соответствуют иному процессу, от-
личному от гармонического; 

Пересчет границ сегментов { },{ }, 1,...,i ist fn i Seg  
во временную область. 

Сегментация информационного сигнала на приемной 
стороне с целью оценивания временных границ проил-
люстрирована на рис. 2, где показаны участки вейвлет-
коэффициентов, соответствующие гармоническому сиг-
налу, и моменты времени, соответствующие изменению 
типа модели (всплески в тех точках, где наблюдается 
переход от одного типа модели к другому). 

 
Рис. 2. Иллюстрация выделения интервалов  

ортогональности принятого информационного  
OFDM-сигнала на основе гармонического  

вейвлет-преобразования (анализ значений  
вейвлет-коэффициентов  

на самом тонком уровне разложения) 

Моменты времени, соответствующие границам ин-
тервалов ортогональности в вейвлет-области, обозна-
чены как 0 1 5, ,..., ,...n n n  Высота вертикальных линий на 
границах соответствует амплитудам вейвлет-
коэффициентов на границах интервалов ортогонально-
сти, а сами значения вейвлет-коэффициентов обозна-
чены как 1 2 5, ..., ,...A A A  Именно эти ненулевые вейвлет-
коэффициенты выявляются с помощью предложенного 
алгоритма сегментации на основе гармонического 
вейвлет-преобразования. Они обозначают переход к 
новому интервалу ортогональности OFDM-сигнала. 

Вычислительный эксперимент 

Рассмотрим OFDM-сигнал на участке длиной 32768 
отсчетов при частоте дискретизации 10 кГц.Sf   Дли-
тельность одного интервала ортогональности сигнала 
составляет 3,2768 с.frT   В данном вычислительном 

эксперименте рассматривается 4 последовательных 
интервала ортогональности, в связи с чем длительность 
всего рассматриваемого участка (длина окна анализа) 
составляет 131072 отсчета, что соответствует в шкале 
абсолютного времени значению 13.1072 c. Шаг по ча-
стоте на частотно-временной диаграмме сигнала со-
ставляет 2 / 1,9165 рад/с.frT     

 Частоты k  сигнала, согласно математической мо-

дели (1), принимают значения 1 2 ;    2 5 ;    

3 4 ;    4 3 .    Амплитуды гармонических со-
ставляющих в математической модели (1) равны соот-
ветственно 

1-й интервал ортогональности: (1)
1 0,8;c   

(1)
2 0,6;c   (1) (1)

3 40,4; 0,8,c c   

2-й интервал ортогональности: (2)
1 1,7;c   

(2)
2 0,4;c   (2) (2)

3 40,8; 0,15,c c    

3-й интервал ортогональности: (3)
1 0,9;c   

(3)
2 1,8;c    (3) (3)

3 40,1; 2,30,c c    

4-й интервал ортогональности: (4)
1 0, 25;c   

(4)
2 0,15;c    (4) (4)

3 42,36; 1,12.c c    
Начальные фазы гармонических составляющих рав-

ны соответственно 
1-й интервал ортогональности: (1)

1 7;    
(1)

2 3;    (1) (1)
3 44; 9,       

2-й интервал ортогональности: (2)
1 2;    

(2)
2 9;    (2) (2)

3 412; 3,5,       

3-й интервал ортогональности: (3)
1 3 5;    

(3)
2 2;    (3) (3)

3 48 7; 1,5,       

4-й интервал ортогональности: (4)
1 6 5;     

(4)
2 4;    (4) (4)

3 42 3; 0,2      . 
Математическая модель OFDM-сигнала в окне ана-

лиза имеет вид: 

  
4 3

( ) ( )

1 0
( ) cos .l l

k k k k
l k

s t c t t
 

      (22) 

Временные задержки лучей (гармонических состав-
ляющих) взяты равными  

1 2

3 4

0,003 мс, 0,005 мс, 
0,006 мс, 0,007 мс.

t t
t t

   
   

 

График сигнала, соответствующего математической 
модели (1), показан на рис. 3.  

 
Рис. 3. Временная реализация  

информационного OFDM-сигнала  

В результате применения гармонического вейвлет-
преобразования получено 17 уровней вейвлет-
разложения, включая начальный уровень, соответству-
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ющий масштабирующей функции ( ).x  Гармоническое 
вейвлет-разложение сигнала имеет также интерпрета-
цию октавного банка фильтров. Начальные уровни 
вейвлет-разложения имеют грубые масштабы, а затем, 
при увеличении номера уровня разложения j  времен-
ное разрешение улучшается. При этом последний 17-й 
уровень является самым тонким уровнем разложения. 
Графики двух последних уровней вейвлет-разложения 
(с номерами 16j   и 17j  ) показаны на рис. 4 и 5. 
Приведены вещественные части комплекснозначных 
вейвлет-коэффициентов (отложены по вертикальным 
осям на рис. 4). 

Путем применения предложенного алгоритма сег-
ментации вейвлет-коэффициентов получены значения 
границ интервалов ортогональности в OFDM-сигнале (в 
шкале дискретного нормированного времени, т.е. номе-
ров дискретных отсчетов): 0 1,n   1 32768,n   

2 65536,n   3 98304,n   4 131072,n   что соответствует 
исходной математической модели. 

 
Рис. 4. Вейвлет-коэффициенты гармонического  

вейвлет-преобразования сигнала 
 для 16-го уровня вейвлет-разложения 

 
Рис. 5. Вейвлет-коэффициенты гармонического  

вейвлет-преобразования сигнала 
 для 17-го уровня вейвлет-разложения  

Полученные результаты показали возможность 
установления временного синхронизма без использова-
ния частотно-временной избыточности. В дальнейшем 
возникает задача определения точности установления 
временного синхронизма с учетом влияния ряда деста-
билизирующих факторов. 

Заключение 
В статье рассмотрено применение гармонического 

вейвлет-преобразования для обработки и анализа 
OFDM-сигналов в нестационарном радиоканале. Разра-
ботан метод выделения на приемной стороне границ 
интервалов ортогональности в информационном OFDM-
сигнале с использованием гармонических вейвлетов и 
анализа вейвлет-коэффициентов на различных уровнях 
разложения, что проиллюстрировано вычислительным 
экспериментом. Использование вейвлет-технологии 
позволяет в условиях частотно-временной избыточно-
сти OFDM-сигнала устанавливать временной синхро-
низм с точностью, необходимой для передачи и обра-
ботки информационных сигналов с заданным каче-
ством. Предлагаемый метод позволяет повысить ин-
формационную скорость на 20-30 %.  
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