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Рассматривается метод двумерной обработки выходных сигна-
лов фоточувствительной линейки тепловизионного приемника (ТП) 
при формировании кадра с точечными источниками излучения (ТИИ). 
Метод позволяет в процессе сканирования обнаруживать ТИИ, энер-
гия светового пятна которого распределяется по четырем сосед-
ним фоточувствительным площадкам линейки, а также улучшать 
форму реакции ТП на ТИИ и выходное отношение сигнал-шум при 
наличии специфических шумов ТП. 
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The method of two-dimensional processing of the infrared (IR) sensor output signals when forming a frame with point sources is 
considered. The method improves the quality of the output frame and allows detecting the point sources during the scanning pro-
cess, while the energy of the light spot of which is distributed over four to neighboring photosensitive squares. The experimental re-
sults have also shown improving the shape of the IR sensor reaction on the point sources and increasing the output signal-to-noise 
ratio in the presence of fixed pattern noises. 
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Введение 

Тепловизионные приемники (ТП) широко 
применяются в различных областях народного хозяйства, 
где возникает задача селекции и определения местопо-
ложения точечных источников излучения (ТИИ) [1]. В ка-
честве примеров можно привести обнаружение утечек на 
газопроводах, устройств робототехники с управляющими 
сигналами в форме последовательностей ТИИ, обнару-
жение потерявшихся людей, структурированную подсвет-
ку при формировании трехмерных изображений деталей 
и др. Понятие ТИИ часто используется в теории пеленга-
ции и радиолокации [2]. ТИИ представляет собой источ-
ник излучения электромагнитного сигнала, образ которого 
описывается двумерной унимодальной функцией, и по-
ложение максимума которой определяют координаты 
ТИИ. В общем случае селекция ТИИ и оценка его коорди-
нат производится в кадре изображения, формируемого на 
выходе ТП, который содержит другие протяженные объ-
екты и искажен воздействием как внешних, так и внутрен-
них специфических шумов ТП [6-12].  

Большинство методов обработки изображений ТП с 
ТИИ основано на различных модификациях алгоритмов 
одномерной согласованной фильтрации, корреляцион-
но-экстремальной обработке и т.п. При этом обычно 
полагают, что шумы ТП не коррелированны, фон и 
структурная помеха либо отсутствуют, либо удалены [6-
12]. Однако в ряде разработок оптико-электронных ска-
нирующих систем с ТП, которые содержат двухрядные 
линейки фоточувствительных элементов (ФЧЭ), подоб-
ные предположения оказываются недопустимыми по 
следующим причинам. Во-первых, поскольку диаметр 

пятна рассеяния от ТИИ согласован с размером фото-
чувствительной площадки (ФЧП) ФЧЭ, то происходит 
распределение энергии светового пятна по соседним 
ФЧП, приводящее к значительному снижению отноше-
ния сигнал-шум. Во-вторых, т.н. тепловые шумы в каж-
дом электронном канале соответствующего ФЧЭ оказы-
ваются сильно коррелированными из-за относительно 
большого значения постоянной времени ФЧЭ. В-
третьих, имеет место значительная по величине струк-
турная помеха, обусловленная действием темнового 
тока ТП, которая проявляется в виде медленно меняю-
щейся низкочастотной помехи. В-четвертых, коэффици-
ент передачи по каждому каналу ТП не равен условной 
единице, что вынуждает проводить периодическую ка-
либровку ТП. Наконец, типичной является ситуация, 
когда реакция от ТИИ представляется ограниченным 
числом дискретных отсчетов. Смещение максимума 
импульсного сигнала относительно моментов выборки 
приводит к снижению отношения сигнал-шум. 

Предлагаемый ниже двумерный метод повышения 
качества изображений за счет стабилизации формы и 
амплитуды канальных импульсов от ТИИ в ТП с двух-
рядными линейками ФЧЭ является попыткой в полной 
мере учесть отмеченные выше особенности формиро-
вания кадра изображения ТП. Техническая реализация 
метода в виде встроенного аналого-цифрового модуля 
ТП обеспечивала бы последующее определение пара-
метров ТИИ «классическими» средствами цифровой 
обработки изображений. 
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Постановка задачи 

Поставим задачу обработки информации с ТП с 
двухрядными линейками ФЧЭ, которые преобразуют 
световые сигналы от ТИИ в электрические импульсы 
колоколообразной формы, стабилизируемые на уровне 
единицы. 

Действие электронного коммутатора, опрашивающего 
линейки ТП, приводит к тому, что полезный импульс сум-
мируется с помехой ,nC  значение которой определяется 
рабочей точкой ФПУ, и некоррелированным гаусовским 
шумом .n  Таким образом, необходимо обнаружить и 
стабилизировать импульсы на уровне единицы. 

Рассмотрение алгоритма будем вести в дискретном 
времени с интервалом дискретизации ,t  превышаю-
щим интервал дискретизации для шума .n  В качестве 
типового импульсного сигнала рассмотрим импульс, 
форма которых есть 2sin  и амплитуда которых должна 
быть стабилизирована на уровне единицы, как в [13]. 

Для математического описания сигнала введем мно-
жество состояний сигнала: 

 0 1, ,V V   

где 0V  означает отсутствие импульса, или существова-

ние импульса на уровне ниже порога ;m  1V  – превыше-
ние импульсом порога m . 

Выделение импульсного сигнала сводится в этом 
случае к нахождению для каждого дискретного момента 

nt  функции ( ),nv   имеющий вид: 
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Метод селекции и восстановления  
канальных импульсов 

Обозначим амплитуду импульса через .nl  Тогда 
наблюдаемый сигнал будет иметь вид: 

( ) ,n n n n nZ l v C      (1) 
где n  – гауссовский шум. При этом 

2 2 ;n    0;i j      2 ;n lD l      2
n cD C   . 

Последовательный опрос электронным коммутато-
ром приводит к тому, что образуется поле дискретных 
отсчётов размером .M N  Тогда соотношение (1) за-
пишем при рассмотрении в двумерном пространстве: 

( ) .ij ij ij ij ijZ l v C     . (2) 

Обработку отсчётов ijZ  будем вести следующим об-

разом. Пусть сигнал ijZ  поступает на дифференцирую-

щее звено с передаточной функцией: 
2

1 2 1 2
2

1 2 1 2
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( ) 1
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 
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где 2
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
 
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где 1 2,T T  – постоянные времени RC-цепи. 

Обозначим 
2

1 ;
T

   
1

1 ;
T

   ( )z p  – выходной сигнал 

звена. 
Раскрывая (3) и переходя к дискретным отсчётам, по-

лучим: 
1 2 1 2

1, , 1 1, 1

1 2 1 2
1, , 1 1, 1( 1) ,

ij i j i j i j

ij i j i j i j

z K z K z K K z

Z K Z K Z K K Z
   

   

   

    
 (4) 

где 1 1 ;K    2 1 .K    
Как известно, дифференцирующее звено не пропус-

кает постоянную составляющую входного сигнала, но 
зато ослабляет амплитуду полезного сигнала и искажа-
ет его форму. Изменяя коэффициенты 1 2,K K  опреде-

лённым образом, можно убрать помеху ,nC  восстано-
вить форму и амплитуду импульса. Выражение (4) за-
пишем в ином виде: 

1 2 1 2
1, , 1 1, 1ij i j i j i j ijz K z K z K K z Z        , (5) 

где 1 2 1 2
1, , 1 1, 1( 1)ij ij i j i j i jZ Z K Z K Z K K Z          . 

Подставим (2) в (5) и рассмотрим отдельно слагае-
мые при помехе ,nC  учитывая, что величина nC  остает-
ся постоянной для каждого ФЧЭ, т.е. 

1, 1 1, ;i j i jC C   , 1 ,i j i jC C  . (6) 

Тогда имеем: 
1 2

1, 1, , 1 , 1
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1, 1 1, 1 1, 1 ,
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где 1 2 1 2
1, , 1 1, 1( 1)ij ij i j i j i jK K K K              . (7) 

Из выражения (7) нетрудно увидеть, что полагая 
2 1,K   мы исключим влияние постоянной составляю-

щей на выходной сигнал звена. Тогда выражение (5) 
преобразуется к следующему виду: 

1
1, 1, 1 1, 1, 1

, 1 , 1
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Опрос электронным коммутатором осуществляется 
по строкам информационного поля ;M N  поэтому есть 
смысл перейти к одномерным (строчным) координатам, 
т.к. всегда идет обработка одного элемента (отсчета), 
тогда как другие необходимые отсчеты хранятся во 
внешней памяти. Введем новые переменные: 

1, 1, 1 1, 1, 1( );n i j i j i j i jS z z Z Z          
1

1 , 1 , 1;n n n i j i jz K S z Z      

;ij nz z  .ij nZ Z  

Тогда (8) можно записать: 
n n nz z Z  . (9) 

Нетрудно видеть, что: 
1

1,n n nz K S z    где 1 , 1 , 1n i j i jz z Z    . 

В итоге получаем,  
1

1n n n nz K S z Z   .    (10) 
При подаче на выход звена сигнала nZ  мы уже име-

ем установленные ранее (т.е. на предыдущем такте) 
коэффициенты 1

1,nK   2
1.nK   Задача заключается в том, 

что при наличии импульса в сигнале nZ  (т.е. ( ) 1nK   ), 
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необходимо найти такие оптимальные значения 1
nK  и 

2 ,nK  чтобы осуществилась стабилизация полезного сиг-
нала на уровне условной единицы. Для этого рассмот-
рим работу дифференцирующего звена (рис. 1) при по-
даче на его вход сигнала без аддитивной помехи, т.е. 

n n nZ l C   при ( ) 1.nv    
Чтобы «подтянуть» точку В к точке С, необходимо вы-

полнить два условия: 
1) [СД] 1,nZ    где [СД]  – отрицательно опреде-

ленная величина. Другими словами, отрезок [СД]  на 
рис. 1 представляет собой отклонение стабилизирован-
ного (то есть восстановленного) импульсного сигнала от 
наблюдаемого входного сигнала.  

Тогда необходимо определить [СД].  Если на сле-

дующем такте установить такой 1 ,nK  что 

2) 1 [СД],n n nK S z   

то можно найти условие пересчета коэффициента 1
nK  

на следующий такт: 
1 1n n n n nK S z l C    . (11) 

Поскольку 1
1 1,n n n nz K S z    то условие (11) запи-

шется так: 
1 1

1 1 1n n n n n n nK S K S z l C      . (12) 

Из выражения (12) находим 1
1 :nK   

1
1 1

1
1 n n n n n

n
n

l C z K S
K

S




   
 . (13) 

.

 
Рис. 1. Иллюстрация работы дифференцирующего звена 

Обозначим через nV  и n̂l  оценки состояния сигнала 

( )nv   и амплитуды nl  стабилизированного сигнала со-

ответственно. Введем в рассмотрение ошибки ,v  ,l  

1
,K  

2K  в оценке величин ( ),nv   nl  и требуемых, со-

гласно (7) и (13) коэффициентов передачи 1
nK  и 2 .nK  

При этом примем во внимание, что информация об ам-
плитуде импульсов, а, значит, возможность оценивать 
их амплитуду и управлять коэффициентами передачи 
звена имеется только тогда, когда ( ) 1.nv    При отсут-

ствии импульсов ( ( ) 0)nv    информация об амплитуде 

импульса отсутствует и, следовательно, не имеется ни-
каких оснований изменять ранее полученную оценку 
амплитуды импульсов и уже установленные коэффици-
енты передачи. В связи с этим в качестве ошибки в 
определении оценок ,nV  ,nl  1

nK  и 2
nK  примем следую-

щие величины:  
( 1) ( ) (1 ( ))V n n n nV v V v       ; 

1
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2

2 2 2
1 1(1 ) ( ) ( )[1 ( )].k n n n n nK v K K v          (14) 

Действие аддитивной помехи n  в сигнале nz  при-

водит к тому, что ошибки ,V  ,l  
1
,k  

2k  будут случай-

ными величинами, зависящими от состояния сигнала 
,n  действительной амплитуды импульса ,nl  величины 

помехи ,nC  и при данном результате наблюдения nz  
будут иметь условное распределение вероятностей [3]: 

( , , | ) ( | , , ) ( )
1( ) ( ) .
( )

n n n n n n n n n

n n
n

P l C Z P z l C P l

P C
P z

   

  
 (15) 

Будем полагать, что помеха n  является гауссовой с 

нулевым математическим ожиданием и дисперсией 2 ,  
т.е. имеет плотность распределения вероятностей: 

2( ) (0, ),nW N    или 
2

22
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1( ) .
2
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nW e
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
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Учитывая при этом, что согласно (1) и (9) будет: 
( ) ,n n n n n nz z l v C       

то для вероятности ( | , , )n n n nP z l C  получаем выраже-
ние: 
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2

2
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2
2
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n n n nP Z l C e
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
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Будем считать, что nl  имеет нормальное распределе-

ние с математическим ожиданием nl  и дисперсией 2 :l  

2( ) ( , )
nn l n lP l N l  , или 

2

2
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2
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Будем считать, что помеха nC  также имеет нор-
мальное распределение с математическим ожиданием 

nC  и дисперсией 2 :C  

2( ) ( , ),
nn C n CP C N C   или 

2

2
( )

2
2

1( )
2

n n

C

C C

n
C

P C e






. (18) 

С учетом выражений (16), (17) и (18) соотношение 
(15) запишется в виде: 
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2 2 2

( , , | ) [ ( )

1, ] ( , ) ( , ) ( ) .
( )

n

n n

n n n n Z n n n

n l n l C n C n
n

P l C Z N l v C

z N l N C
P z

    

     
 (19) 

Путем математических преобразований исключим 
величины nl  и nC  из первого сомножителя: 

2 2 2

( , , | ) [ ( )

1, ] ( , ) ( , ) ( ) ,
( )

n

n n

n n n n Z n n n

n v l v v C v c n
n

P l C Z N z l v

C X N m S N d S
P Z

    

  
 (20) 

где  

2 2 2 2( ) ;v n l CX v      
2 2

2
2 2 ;

( )
l

v
l n

S
v
 


  

 
2 2

2
2 2 ;C

c
C

S
 


 

 

2 2

2 2

( )
;

( )
n n l n

v
n l

z v l
m

v
   


  


 

2 2

2 2
n C n

v
C

z C
d

  


  


, 

здесь .n n nz z z   

В качестве критерия качества получаемых оценок 
примем выражение из средних квадратов ошибок, име-
ющих вид [3, 4]: 

2 2 ( , , | ) ;
n n n

V V n n n n n n
l C

P l C Z dl dC


      (21) 

2 2 ( , , | ) ;
n n n

l l n n n n n n
l C

P l C Z dl dC


      (22) 

1 1

2 2 ( , , | ) ;
n n n

k k n n n n n n
l C

P l C Z dl dC


      (23) 

2 2

2 2 ( , , | ) ,
n n n

k k n n n n n n
l C

P l C Z dl dC


      (24) 

в которые вместо ,V  ,l  
1
,K  

2K  и ( , , | )n n n nP l C Z  

подставляем значения, определяемые соотношениями 
(14) и (20). Далее, беря частную производную от 2

V  по 

nV  и приравняв нулю, получим выражение для опти-

мальной оценки :nV  
2 2 ( , , | ) ;

n n n

V V n n n n n n
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Поскольку 2 2[ ( )] ,V n nV v     то отсюда следует, что 

2

2 2
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где 2 2 2 2( )v n l Cv      . 
Раскрывая знак суммы, получим выражение для оп-

тимальной оценки :nV  

2
1 1

2 2
0 0 1 1

( , ) ( )
.

( , ) ( ) ( , ) ( )
nn

Zn n n n
n

n n z n n nz

N l C z V
V

N C z V N l C z V
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
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Нетрудно убедиться, что данное соотношение пред-
ставляет собой формулу Байеса и величина nV  пред-
ставляет собой априорную вероятность того, что им-
пульсный сигнал в точке «n» находится в состоянии 

1,n V   а вероятность 1( ),V  которую удобно обозна-

чить через ,nV  представляет собой априорную вероят-
ность нахождения импульсного сигнала в этом состоя-
нии. 

Введем в рассмотрение отношение правдоподобия, 
определяемое соотношением:  

2
1

2
0

( , )
( ) ,

( , )
n

n

z n n n
n

z n n

N l C z
z

N C z
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 

 

где 2 2 2 2
1 ;l C      2 2 2

0 C    .  
Тогда выражение для :nV  

( )
1 [ ( 1) ]

n n
n

n n

z V
V

z V



  

. (25) 

Соотношение (25) представляет собой рекуррентный 
алгоритм порогового обнаружения интервала существо-
вания импульсного сигнала в условиях помех и получи-
ло название «вероятностного реле» [14]. 

Аналогичным образом, приравнивая нулю частные 

производные для величин ˆ ,nl  1
nK  и 2

nK  из выражений 
(22), (23) и (24), приходим к следующим состояниям для 

определения оптимальных оценок ˆ ,nl  1
nK  и 2

nK : 

1 1
ˆ ˆ (1 )n n n nl m V l V   ; (26) 

1 1 1 1 1
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2 1nK  , (28) 
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. 

В полной форме алгоритм, который образуется по-
следовательностью соотношений (25-28), оказывается 
достаточно сложным для практической реализации. Од-
нако его можно упросить. При вычислении 1m  будем 

полагать 1,nl   тогда  
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Рис. 2. Схема вычислительного устройства. Обозначения  

на схеме: ЗУ – запоминающее устройство,  
НП – нелинейный преобразователь,  

ВР – вероятностное реле 

Для 1
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Рассмотрим величину: 
1 , 1 , 1n i j i jz z Z    . (29) 

Поскольку выход звена 1, jiz  стремится к единице, а 

сигнал , 1i jZ   содержит постоянную составляющую, то 

1nZ   можно рассматривать как прогноз постоянной со-

ставляющей, т.е. 1 ,n nZ C    и тогда окончательно по-
лучаем: 

1 1
1(1 2 )n n nK K V    (30) 

1( 1)( ) (1 )
.n n n

n
n

z z b g g z
V

S
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  
 

 

Структура устройства, функционирующего по алго-
ритму, описываемому формулами (25), (31), (28), изоб-
ражена на рис. 2. 

Учитывая, что ,n n nz z Z   получаем 

1 1 1
1

( 1)( ) ( )
(1 2 ) [ ]n n

n n n n
n

z b g g z
K K V V

S




  
   . (31) 

Результаты моделирования 

В статье приводятся результаты имитационного мо-
делирования для случая, когда пятно рассеяния от ТИИ 
попадает на четыре ФЧП, распределяя энергию пример-
но следующим образом: 30 % приходится на ФЧП  
с условными номерами (1,1) и (1, 2), т.е. строка с номе- 
ром 1, а оставшиеся 70 % – на ФЧП с номерами (2,1) и  
(2, 2) (строка с номером 2). На рис.3 приводятся непре-
рывный и дискретный виды сигналов на выходе каждого 
из четырех ФЧЭ, искаженных воздействием высокоча-
стотной помехи; из рис. 3 видно, что полезный сигнал в 
каждом канале ТП представлен 5-7 дискретными отсче-
тами. На рис. 4 показан неискаженный и зашумленный 
виды суммарного сигнала с четырех ФЧЭ. По результа-
там обработки предложенным методом видно (рис. 5), 
что происходит восстановление амплитуды сигнала от 
ТИИ до уровня условной единицы. Рисунок 6 показывает 
результаты статистической обработки, когда находились 
зависимости среднеквадратической ошибки (СКО) оцени-
вания (восстановления) амплитуды реакции ТП на ТИИ 
от величины дисперсии канального шума 2  при отсут-
ствии (пунктир) и при наличии обработки (непрерывная 
линия). Из рис. 6 видно, что предложенный метод дает 
существенный выигрыш по критерию СКО в случае 
больших значений дисперсий канальных шумов ФЧЭ. 

Заключение 

Предложенный метод не только восстанавливает 
сигналы от ТИИ, но и улучшает качество тепловизионно-
го изображения в целом. Действительно, разработанный 
метод является практически инвариантным к изменению 
коэффициентов передачи ФЧЭ в рабочем режиме ТП, 
т.к. коэффициент усиления пересчитывается на каждом 
такте. Кроме того, изменения низкочастотной помехи на 
интервале существования канальных импульсов также 
учитываются из-за потактового пересчета. Таким обра-
зом, метод ориентирован на обнаружение и выделение 
слабых оптических сигналов в условиях нестационарно-
сти параметров ТП. 
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 а) (1,1) б) (1,1) 

 
 в) (1,2) г) (1,2) 

 
 д) (2,1) е) (2,1) 

 
 ж) (2,2) з) (2,2) 

Рис.3. Распределение энергии пятна рассеяния по четырем ФЧП (1, 1), (1, 2), (2, 1), (2, 2):  
а, в, д, ж – непрерывный сигнал; б, г, е, з – используемые для расчета дискретные отсчеты 
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 а) б)  

Рис. 4. Неискаженный (а) и зашумленный (б) суммарный сигнал на выходе ФЧЭ (2, 2) 

 
 а) б)  

Рис. 5. Формируемый на выходе ФЧЭ (2, 2) восстановленный сигнал (а) и его кусочно-линейная аппроксимация (б) 

 
Рис. 6. Зависимость СКО восстановления амплитуды  

сигнала ТИИ от дисперсии канального шума  
при отсутствии (пунктир) и наличии обработки  

(непрерывная линия) предложенным методом 
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