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Рассматривается  кадр низкоорбитальной системы спутниковой 
связи LEO (low-Earth-orbit) направления DownLink (DL)  (от базовой 
станции (БС) спутника к пользователю на Земле), построенный ана-
логично кадру технологии LTE DL  сотовой связи с системой синхро-
низации, основанной на первичном (Primary synchronization signal – 
PSS) и вторичном (Secondary synchronization signal – SSS) синхросиг-
налах В  низкоорбитальной спутниковой системе связи и передачи 
данных (ССиПД) PSS построен на 8 одинаковых m-последовательнос-
тях, модулированных DPSK (differential phase-shift keying – дифферен-
циальная фазовая манипуляция) с фазовым сдвигом π/2. При приме-
нении корреляционных методов синхронизации во временном домене, 
корреляционная функция PSS образует «гребенку» из 11 пиков, мар-
кирующую начало кадра. В данной статье исследуются корреляцион-
ные характеристики при построении PSS на элементах последова-
тельностей CAZAC (Constant Amplitude Zero AutoCorrelation) с δ-
автокор-реляцией (последовательности Фрэнка и Задова-Чу, иссле-
дуемые в данной работе) в сравнении с используемыми в PSS низко-
орбитальной системы m-последовательностями, модулированными 
DPSK. Критерии исследования – сравнение величин мерит-факторов 
рассматриваемых последовательностей. Исследование проведено в 
среде математического моделирования MATLAB с использованием 
моделей Рэлеевского и Гауссовского каналов при различных величинах 
отношения сигнал/шум (ОСШ). В результате исследований установ-
лено, что последовательности Фрэнка, в основном, превосходят по 
корреляционным характеристикам применяемые в PSS рассматри-
ваемой системы m-последовательности, модулированные DPSK. 
Недостаток последовательностей Фрэнка – затруднения в подборе 
последовательностей нужной длины. 
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The article considers the frame of the low-orbit satellite communication system in DownLink (DL) direction (from the satellite base sta-
tion (BS) to the user on Earth), built similarly to the frame of LTE cellular communication technology with a synchronization system 
based on primary (Primary synchronization signal - PSS) and secondary (Secondary synchronization signal - SSS) synchrosignals in 
the frame of the direction DL. In the low-orbit satellite systems PSS is built on 8 identical m-sequences modulated by DPSK (differential 
phase-shift keying manipulation) with a phase shift of π/2. When using correlation synchronization methods in the time domain, the PSS 
correlation function forms a «comb» of 11 peaks marking the beginning of the frame. This article examines the correlation characteris-
tics when constructing PSS on elements of CAZAC sequences (Constant Amplitude Zero AutoCorrelation) with δ–autocorrelation 
(Frank and Zadoff-Chu sequences studied in this paper) in comparison with DPSK modulated m–sequences used in PSS of a low-orbit 
system. The research criteria are a comparison of the values of the merit-factors of the sequences under consideration. The study was 
conducted in the MATLAB mathematical modeling environment using Rayleigh and Gaussian channel models at various values of the 
Signal-to-Noise-Ratio (SNR). As a result of the research, it was found that Frank's sequences, in general, surpass the DPSK modulated 
m-sequences used in the PSS of the system under consideration in terms of correlation characteristics. The disadvantage of Frank's 
sequences is the difficulty in selecting sequences of the desired length. 
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Введение. Особенности построения кадра 
низкоорбитальной спутниковой системы 

В статье [1] описаны результаты разработки 
методики слепой идентификации нисходящего 
(DL) сигнала низкоорбитальной системы спут-
никовой связи в диапазоне от 10,7 до 12,7 ГГц 
(Ku-диапазон) спутниковых систем на низкой 
околоземной орбите – LEO [1]. Этот метод яв-
ляется значительным расширением существу-
ющих методов идентификации сигналов с орто-
гональным частотным разделением (Orthogonal 
Frequency Division Multiplexing (OFDM) вслепую. 
На рис. 1 [1] (рис. 6, с. 12) представлен кадр DL 
направления передачи символов OFDM. Мето-
ды построения данного кадра и кадров техно-
логии LTE DL направления подобны: в его со-
ставе также присутствуют синхросигналы, соот-
ветствующие первичному  (Primary  synchroniza- 
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Рис. 1. Кадр низкоорбитальной спутниковой системы Ku – диапазона частот DownLink направления (спутник – Земля)  

в координатах «время – частота» 

tion signal – PSS) и вторичному синхросигналам (Sec-
ondary synchronization signal – SSS) LTE. Определены 
точные значения синхронизирующих последовательно-
стей кадра DL направления спутниковых систем. 

Каждый кадр состоит из 302 интервалов символов 
длиной Tsym = 4,4 мкс плюс интервал защиты кадра Tfg, 
для общего периода кадра Tf = (1/750) с = 1,33 мс. Кадр 
начинается с PSS, который изначально представлен во 
временной области; за ним следует SSS, отформатиро-
ванный как стандартный символ OFDM с 4-х позицион-
ной квадратурной амплитудной модуляцией (КАМ-4). 
Более подробно служебные сигналы кадра описаны в 
[1]. Последующий кадр может передаваться немедлен-
но или с перерывом, в зависимости от требований 
пользователя. Известные информационные символы 
(SSS и др.) позволяют приемнику выполнять оценку 
канала по всем поднесущим в начале и конце каждого 
кадра с интерполяцией внутри кадра. Частотный «же-
лоб» центрального частотного диапазона канала шири-
ной 4F (F – частотный интервал между поднесущими) 
присутствует во всех символах OFDM кадра, кроме PSS 
(см. рис. 1). 

Оценка последовательностей синхронизации, встро-
енных в каждый кадр системы, является одним из важ-
нейших этапов обработки принятого кадра. Местополо-
жение последовательностей в кадре можно определить 
по интервалам символов OFDM внутри кадра, содер-
жащим известные данные для пользовательского тер-
минала (например, подпоследовательности PSS). Для 
сигналов OFDM технологий Wi-Fi, WiMAX, LTE синхро-
последовательности не только известны, но и постоян-
ны от кадра к кадру. Обнаружение таких последова-
тельностей внутри кадра спутниковой системы произво-
дится методом выделения отдельных интервалов сим-
волов OFDM и корреляции их по нескольким кадрам 
(т.е. методом «скользящего окна» во временной обла-
сти длительностью в один или несколько символов), 
чтобы определить, содержит ли интервал «окна» при-
знаки, повторяюшиеся от кадра к кадру. При приеме и 
«расшифровке» кадра эта процедура выявила, что ин-
тервал корреляции повторяющихся кодов состоит из 8 
повторений отображаемой во временной области под-
последовательности символов длиной N/8 (N – число 
выборок символа OFDM), причем первый интервал ин-
вертирован. 8 повторений подпоследовательности 

предваряются циклическим префиксом длины Ng выбо-
рок. Заимствуя язык из спецификации LTE, эта последо-
вательность выполняет назначение первичной последо-
вательности синхронизации (PSS). Построение символа  
PSS позволяет определять начало кадра во временной 
области путем синхронизации по корреляционным пикам 
апериодической (нециклической) взаимной корреляции 
«скользящего окна» и 8 повторений подпоследователь-
ности символа PSS, которая  известна пользователям 
спутниковой системы. Было обнаружено, что PSS не 
только идентичен на всех кадрах с одного и того же 
спутника низкоорбитальной системы, но и идентичен на 
всех спутниках в системе [1].  

Допплеровская модель принимаемого аналогового 
сигнала с учетом как частотного сдвига, так и расшире-
ния/сжатия сигнала основной полосы частот может быть 
представлена [1] ((5), с. 3): 
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где Fc – центральная частота канала OFDM; Ḟc ≈ Fc – 
центральная частота, на которую настроен приемник;  
τ0 – задержка, испытываемая сигналом на пути 
наименьшего времени распространения от передатчика 
к приемнику; β – коэффициент сдвига центральной ча-
стоты; ω(t) – комплексный белый Гауссовский шум с ну-
левым средним значением, синфазная и квадратурная 
составляющие которого имеют двустороннюю спек-
тральную плотность N0/2.  

Когда трафик кадров достаточно низок, чтобы меж-
ду кадрами присутствовали временные промежутки, 
можно наблюдать резкое увеличение энергии прини-
маемой оцифрованной выборки |y(n)|2 в начале кадра, 
что позволяет установить  значение первого временно-
го отсчета в первом символе OFDM кадра nm00, где nmik 
– отсчет принимаемого сигнала y(n); k – это индекс от-
счета в последовательности длиной N (число времен-
ных отсчетов в символе OFDM); i – индекс символа 
OFDM в последовательности символов длиной Nsf, 
равной числу символов в кадре; m – индекс кадра. 
Первым символом кадра является PSS. Добавляя це-
лые числа, кратные (N + Ng), можно затем аппроксими-
ровать nmi0 для всех i ∈ (0,Nsf).  

Выражение для PSS во временной области может 
быть записано как [1] (с. 10): 
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где Fs – ширина полосы частот канала связи; 1p(k) – 
индикаторная функция, равная единице, когда k ∈ p, и 
нулю в противном случае; p = {k < N/8}; N – число вре-
менных отсчетов символа; Ng – число временных отсче-
тов циклического префикса (ЦП);  

Последовательности синхронизации имеют двойное 
назначение для работы с сигналами системы: это син-
хронизация по пикам взаимной корреляции принятого и 
эталонного PSS, и возможность использования ампли-
туды и временного положения пиков корреляции  для 
вычисления допплеровского частотного сдвига и вре-
менной задержки в точке приема. На рис. 2 [1] (pис. 7, 
с. 13) показан результат корреляции PSS, формирую-
щей резкие пики в начале каждого кадра. Отличитель-
ная форма 11-зубчатой «гребенки», показанной на 
вставке рисунка, является результатом инверсии пер-
вой подпоследовательности и повторения следующих 

подпоследовательностей 2 /8 1
/8( ) N

k k Np 
 [1], из которой со-

стоит PSS. Соседние кадры могут иметь разные уровни 
мощности, несмотря на то, что они принимаются с одно-
го и того же спутника и луча, что свидетельствует о 
применении приема адаптации мощности для конкрет-
ного подмножества пользователей в пределах сервис-
ной ячейки. 

 
Рис. 2. Корреляция данных кадра низкоорбитальной  

спутниковой системы с эталонным PSS  
после компенсации Допплеровского смещения 

Фазовая когерентность поддерживается на протяже-
нии  каждого кадра, и фазовое соотношение между по-
следовательностями синхронизации является постоян-
ным во всех кадрах и спутниковых приемниках. После-
довательности синхронизации данной системы не уни-
кальны для каждого спутника. Это создает проблему 
неоднозначности назначения спутника.  

В низкоорбитальной спутниковой системе PSS по-

строен на m-последовательности, также имеющей высо-
кие свойства автокорреляции [2]. Кодирование m-пос-
ледовательности в виде серии фазовых сдвигов π/2 
предназначено для уменьшения утечки спектральной 
мощности по сравнению с обычным двоичным кодиро-
ванием. Обоснование для дифференциального кодиро-
вания (DPSK) m-последовательностей PSS, с точки зре-
ния авторов [1], неубедительно [1] (с. 13). Известно, что 
симметричная DPSK повышает устойчивость данных при 
демодуляции к допплеровской и временной неопреде-
ленности, распространенной в спутниковой связи [3]. Но 
это не относится к когерентной корреляции с известным 
PSS (или его частью) для синхронизации частоты и вре-
мени. В симметричной дифференциальной фазовой мо-

дуляции DPSK подпоследовательности PSS 2 /8 1
/8( ) N

k k Np 
  

каждый бит m-последовательности указывает на поло-
жительное или отрицательное вращение фазы π/2. M-
последовательность может быть сгенерирована с ис-
пользованием 7-ступенчатого регистра сдвига с линей-
ной обратной связью (LFSR) Фибоначчи с примитивным 
многочленом 1+D3+D7 и начальным состоянием 
(a−1,...,a−7) = (0,0,1,1,0,1,0) [1, 2]. Если выходные данные 
LFSR a0, ..., a126 хранятся в виде 127-разрядного числа с 
a0 в качестве старшего бита двоичного числа и a126 в 
качестве младшего бита, то добавление к этому числу 0 
дает 128-разрядное шестнадцатеричное число qpss в вы-
ражении [1] (с. 11):   
qpss = C1B5 D191 024D 3DC3 F8EC 52FA A16F 3958;  
qpss = [1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 
0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 
0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 
0 0 0];  (5) 

Восемь подпоследовательностей qpss (первая – ин-
вертирована) с DPSK модуляцией (фазовый сдвиг равен 
π/2) формируют синхросигнал PSS в кадре, что позволя-
ет получить 11-пиковую «гребенку» при взаимной апери-
одической корреляции эталонного и принятого PSS. 
Синхросигнал SSS в кадре Starlink – это каноническая 
последовательность с хорошими свойствами автокорре-
ляции; SSS представляет собой соединение двух скрем-
блированных m-последовательностей, подобно постро-
ению  SSS в технологии LTE. 

Постановка задачи 

В предыдущем разделе обозначены «слабые» сто-
роны служебных сигналов спутниковой системы, а имен-
но – PSS: недостаточность оснований для применения 
дифференциального кодирования (DPSK) m-последо-
вательностей PSS; проблема неоднозначности назначе-
ния спутника при использовании одинаковых последова-
тельностей PSS для всех спутников низкоорбитальной 
системы. Построение символа PSS на 8 одинаковых 
подпоследовательностях позволяет по «гребенке» кор-
реляционных пиков (см. рис. 2) определять начало кадра 
во временной области. Скорость и точность синхрониза-
ции зависит от корреляционных свойств последователь-
ности PSS. Наиболее популярной характеристикой кор-
реляционных функций (КФ) является мерит-фактор (MF) 
[4, 5], определяемый в различных вариантах как отно-
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шение квадрата величины максимального пика КФ по-
следовательностей к сумме величин квадратов боковых 
лепестков КФ, либо обратной величиной отношения. 

В спутниковом канале LEO-to-Earth на высоте поряд-
ка 550 км от Земли и при движении спутников со скоро-
стями порядка 27000 км/ч, спутник находится в зоне 
видимости абонентского терминала (АТ) не более 
250 секунд [6] (с. 31), [7] (с. 17). Максимальное количе-
ство абонентов, использующих АТ UT-1(разновидность 
АТ [6]), которое может обслужить один космический ап-
парат (КА) спутниковой системы в подспутниковой зоне, 
составляет около 22 200 активных абонентов при сред-
нем потреблении трафика (0,9 Мбит/с) и 5500…7400 
при пиковом потреблении трафика (2,7…3,6 Мбит/с). В 
подспутниковой зоне одного КА находится порядка 7470 
ячеек диаметром 24 км. Тогда в каждой ячейке на 
уровне проводного сервиса можно обслужить всего 3-х 
активных абонентов при среднем потреблении трафика 
и только 1-го абонента – при пиковом потреблении тра-
фика [6]. Терминал спутниковой системы налаживает 
связь со спутниками и доступ к сети  около 1-2-х минут в 
идеальных условиях (в условиях наличия препятствий 
может понадобиться более длительное время) [6].  Учи-
тывая влияние на качество связи атмосферных помех и 
условий приема Рэлеевского канала в плотной город-
ской застройке непосредственно у поверхности Земли, 
проблемы быстрого установления синхронизации БС и 
пользователей играют важнейшую роль в повышении 
скорости обслуживания абонентов. Для решения про-
блемы снижения времени установления синхронизации 
БС с пользователем без потери качества приема одной 
из задач является повышение величины MF при корре-
ляционной обработке эталонного и принимаемого PSS. 
Это может быть достигнуто применением последова-
тельностей с δ-корреляцией для построения PSS. 

В данной работе ставится задача исследовать воз-
можность альтернативного метода формирования PSS 
в кадре, основанного на применении CAZAC последова-
тельностей Задова-Чу (ZC) или Фрэнка (Fr) с числом 
элементов 128 (N/8) для формирования подпоследова-
тельности PSS. CAZAC последовательности обладают 
высоким мерит-фактором, что способствует снижению 
величины ОСШ, т.е. снижению мощности выборок сим-
вола PSS и уменьшению количества принимаемых кад-
ров, включающих PSS, для усреднения пиков корреля-
ции и получения более точного положения начала кад-
ра. В процессе исследований учитывается также вели-
чина пик-фактора (PAPR) принимаемого сигнала s(t), 
включающего символ PSS. Выражения для MF в разных 
источниках представлены по-разному. Для сравнитель-
ного анализа корреляционных характеристик апериоди-
ческой АКФ в качестве основных метрик в [4] выбирают-
ся характеристики: ISLR ‒ это отношение суммарной 
энергии боковых лепестков апериодической АКФ после-
довательности длины N к энергии главного лепестка: 

1
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1 , 0
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( )
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l N l

C l
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а также мерит-фактор (MF), вычисляемый как величина, 

обратная ISLR. В [5] мерит-фактор вычисляется из вы-
ражения: 
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где CA () – боковой лепесток апериодической автокор-
реляционной функции на позиции ; N – длина последо-
вательности. 

В данном исследовании значение мерит-фактора 
находится из выражения:   

mod(max( )) ,
{[ mod( ( ))] mod(max( ))} / ( 1)
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


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 





,  (6) 

где mod(max(АКФ)), mod(max(ВКФ)) – величины моду-
лей максимальных значений автокорреляционной (АКФ) 
или взаимнокорреляционной (ВКФ) функций исследуе-
мой величины; mod(АКФ(n)), mod(ВКФ(n)) – величины 
модулей боковых лепестков АКФ или ВКФ функций; n – 
число элементов АКФ, ВКФ. Поскольку корреляцион-
ные функции являются энергетическими характеристи-
ками сигналов, в выражении (6) MF является отношени-
ем энергии главного лепестка АКФ, ВКФ к средней ве-
личине энергии боковых лепестков. Поскольку элементы 
корреляционных функций могут быть комплексными ве-
личинами, в (6) формируются модули значений этих 
элементов.  

Значение PAPR вычисляется из выражения [8]: 
2

2

max ( )
,

( )

s t
PAPR

M s t


 
 

 (7) 

где M [] – математическое ожидание квадрата принятого 
сигнала 2( )s t .  

Результатом исследования является сравнительный 
анализ MF для последовательностей ZC, Fr в сравнении 
с MF для m-последовательности (5) с модуляцией DPSK 
(m-DPSK) для заполнения PSS кадра DL. В статье [1] 
при описании приема и обработки кадра речь идет о 
когерентном накапливании символов с PSS для даль-
нейшей обработки различными способами. Однако в [9] 
рассматривается случай некогерентного обнаружения 
сигналов с модуляцией DPSK с применением схемы не-
когерентного обнаружения, не требующей согласования 
по фазе с принимаемой несущей. Подобный вариант 
корреляционных методов синхронизации во временном 
домене используется с оборудованием приема, настро-
енного на детектирование энергии без измерения фазы, 
т.е. в данном исследовании проводится сравнение, в 
первую очередь, величины корреляционных пиков, хотя 
учитывается и их усредненное временное положение по 
отношению к идеальному. Для заполнения PSS при всех 
вариантах испытаний используются 8 одинаковых по-
следовательностей (m-DPSK, ZC, Fr) с n = 128, следую-
щих одна за другой во временном домене с инверсией 
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первой последовательности, заполняющих символ PSS 
в начале кадра и циклический префикс перед синх- 
росигналом PSS (Tg), длительностью 1/8 PSS (см. 
рис. 1), заполняемый для варианта m-DPSK 16 послед-
ними элементами этой последовательности; для вари-
антов ZC, Fr – также 16 элементами последовательно-
сти Фрэнка. ЦП PSS занимает один символ перед PSS и  
выравнивается по мощности с 128 элементами подпо-
следовательностей PSS путем модуляции повторяю-
щимися элементами ЦП всех 128 поднесущих частот-
ной полосы PSS. При исследовании прохождения кад-
ром моделей Рэлеевского и Гауссовского каналов в 
среде моделирования MATLAB PSS символ с ЦП зани-
мает 9 OFDM символов частотно-временных ресурсов 
пользователя LTE DL кадра с шириной полосы в 11 ре-
сурсных блоков (RB) (132 сигнала поднесущих частот 
кадра LTE DL) [10, 11]. Четыре неиспользуемых подне-
сущих в модели PSS кадра системы модулируются ну-
левыми элементами. В процессе исследования рас-
смотрены варианты: 

– апериодических (нециклических) АКФ символов 
PSS с ЦП, построенных на последовательностях  
m-DPSK, ZC, Fr (как описано выше) без прохождения 
канала первичными синхросигналами (эталонных PSS);  

– апериодических ВКФ символов PSS с ЦП эталон-
ных и прошедших модель Гауссовского канала с вари-
антами ОСШ = 0 дБ, 10 дБ, 20 дБ; 

– апериодических ВКФ символов PSS с ЦП эталон-
ных и прошедших модель Рэлеевского канала с вариан-
том профилей задержек плотной городской застройки 
(ETU) [12] (табл. B.2.1-4, с. 401) и параметрах канала 
ОСШ = 10 дБ, Fdop = 50 Гц (максимальное Допплеровс-
кое смещение частоты); с вариантом профилей задержек 
мобильного скоростного пользователя (EVA) [12] (табл. 
B.2.1-3, с. 401) и параметрах канала ОСШ = 10 дБ, 
Fdop = 120 Гц.  

– циклических ВКФ символов PSS с ЦП эталонных и 
прошедших модель Рэлеевского канала с вариантом 
профилей задержек плотной городской застройки (ETU) 
и параметрах канала ОСШ = 10 дБ, Fdop = 50 Гц в соста-
ве усеченной модели кадра LTE (18 символов LTE 
OFDM), размещенного в пользовательских символах 
модели LTE DL кадра из ресурсов математических мо-
делей кадров технологий связи системы MATLAB. Цик-
лическое повторение обеспечивается двукратным по-
вторением усеченной модели кадра LTE DL. 

Построение исследуемых последовательностей: 
– построение m-DPSK описано выше; 
– элементы последовательности ZC(51,127) форми-

руются согласно выражению [13]:   
* * *( 1)( ) exp( ), 0,1... 1u

u n na n i n N
N


   


   (8)  

для N – нечетного, где u = 51 – индекс последователь-
ности, N = 127 – число элементов. Для получения 128 
элементов в конце ZC(51,127) добавляется 0; выбор 
значения N = 127 обусловлен тем, что корреляционные 
свойства многофазных последовательностей (MF) выше 
при значении числа элементов, равного простому числу, 
в данном случае, наиболее близкому к N = 128; выбор 

параметра u = 51 соответствует требованию взаимопро-
стых чисел u и N [13]; 

– последовательность Фрэнка может иметь число 
элементов, равное квадрату целого числа; элементы 
последовательности Фрэнка an определяются следую-
щим образом [14, 15, 16]: ,na    где exp( );   

2 ,p
N




  где p и N целые взаимопростые числа; 

μ,ν = 0,1,…,N-1. Для получения 128-элементной после-
довательности Фрэнка проведена конкатенация 2-х  
64-элементных последовательностей в вариантах: 
Fr(31,64)+Fr(11,64); Fr(13,64)+Fr(11,64). Параметры 
p = 31, 11, 12 и u = 51 выбирались свободно, но с учетом 
взаимопростых чисел по отношению к N. В [14] обосно-
вано превосходство корреляционных свойств многофаз-
ных последовательностей при условии, что число эле-
ментов N равно квадрату целого числа. 

Результаты исследований 

а). Апериодические АКФ 8 одинаковых последова-
тельностей (m-DPSK, ZC, Fr) с n = 128 с инверсией пер-
вой последовательности в составе PSS.  

Вычисление MF производилось по формуле (6), 
усреднение результатов – по 10 испытаниям. Величина 
max(АКФ) получена из выражения: 

max ( )
max( )

i
i

АКФ
АКФ

i



,   (9) 

где i – число пиков АКФ «гребенки» автокорреляции 
символа PSS. 

На рис. 3, а, б, в представлена «гребенка» АКФ PSS, 
построенного на OFDM символах 8-и последовательно-
стей Фрэнка, Задова-Чу и m-DPSK с инверсией первой 
последовательности: 8х128 элементов Фрэнка 
Fr(31,64)+Fr(11,64) рис. 3, а –- синий цвет графика; За-
дова-Чу ZC(51,127)+0 рис. 3, б – сиреневый цвет;  
m-DPSK128 рис. 3, в – красный цвет. Каждая АКФ со-
держит 13 пиковых значений, превышающих более, чем 
в 2 раза по модулю амплитудных величин среднее зна-
чение модулей отсчетов боковых лепестков АКФ и от-
стоящих друг от друга в идеальном варианте на 274 от-
счета. Выбросы АКФ рассматриваемых последователь-
ностей, не удовлетворяющих этим условиям, не учиты-
ваются при вычислениях значений max (АКФ) и рассмат-
риваются как боковые лепестки корреляционной функ-
ции. Точность «попадания» пиков АКФ в границы интер-
валов корреляции длиной 274 выборки для подпоследо-
вательностей PSS длиной 128 элементов, образующих в 
кадре модели LTE DL OFDM символы пользователей 
(т.е. увеличиваемые на 9 временных выборок элемен-
тами ЦП до 137 выборок) ± 1…2 выборки. Для последо-
вательностей Фрэнка отклонение от идеального вре-
менного положения пиков АКФ ± 1…2 выборки прихо-
дится на 8 пиков из 13, для последовательностей Задо-
ва-Чу – на 6 пиков из 13, для m-последовательностей с 
DPSK модуляцией – на 10 пиков из 13. 

б). Апериодические ВКФ 8 одинаковых последова-
тельностей (m-DPSK, ZC, Fr) с n = 128 с инверсией пер-
вой  последовательности,  заполняющих  символ  PSS  и 
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 а) б) 

 
 в) 

Рис. 3. а) АКФ PSS на конкатенации Fr(31,64)+Fr(11,64; б) АКФ PSS на последовательностях ZC(51,127)+0; 
в) АКФ PSS на m-последовательностях c DPSK модуляцией 

 
Рис. 4.  С левой стороны - ВКФ PSS, исходного и прошедшего через Гауссовский канал с ОСШ = 0 дБ. PSS сформирован  

из конкатенированных последовательностей Фрэнка Fr(31,64), Fr(11,64); с правой стороны – символ PSS с OFDM модуляцией 
во временном домене  до (синий цвет) и после (сиреневый цвет) прохождения Гауссовского канала с ОСШ = 0 дБ. 

 

тех же конфигураций последовательностей, прошедших 
модель Гауссовского канала с вариантами ОСШ = 0 дБ, 
10 дБ, 20 дБ; 

На рис. 4 представлен пример «гребенки» ВКФ PSS, 
построенного на OFDM сигналах последовательностей 
Фрэнка 8х128 элементов Fr(31,64)+Fr(11,64) до и после 
прохождения Гауссовского канала с ОСШ = 0 дБ, ис-
пользованного для моделирования ВКФ.  

На рис. 5 представлен график зависимости MF ВКФ 
PSS, построенного на OFDM сигналах подпоследова-
тельностей Фрэнка Fr(31,64)+Fr(11,64), Задова-Чу 
ZC(51,127)+0 и m-DPSK(128) в зависимости от ОСШ 
Гауссовского канала. ВКФ вычислялись между парами 
одинаковых OFDM сигналов исследуемых последова-
тельностей, исходных и прошедших Гауссовский канал.  

 
Рис. 5. График зависимости MF ВКФ от ОСШ Гауссовского 

канала для эталонных OFDM сигналов последовательностей 
Fr(31,64)+Fr(11,64) – синий цвет, m-DPSK(128) – красный цвет 

и ZC(51,127)+0 – зеленый цвет при их прохождении модели 
канала в среде моделирования MATLAB 
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Таблица 1. Результаты вычислений MF ВКФ PSS, построенного на последовательностях Fr, ZC  
и m-DPSK в зависимости от ОСШ Гауссовского канала 

PSS seq / MF аперио-
дических ВКФ  

Гауссовский канал 

PSS на последовательно-
стях Fr(31,64)+(11,64) 

PSS на m-последова-
тельности с модуляцией 

DPSK(π/2) 

PSS на последовательно-
сти ZC(51,127)+0 

MF_ВКФ (ОСШ=0дБ) 18.3193 17.3683 17.3647 
MF_ВКФ (ОСШ=10дБ) 23.8361 21.9954 21.0919 
MF_ВКФ (ОСШ=20дБ) 24.8553 22.8789 21.8626 

 
Рис. 6. С левой стороны – ВКФ PSS(Fr); с правой стороны – ВКФ PSS (m-DPSK) 

 
Рис. 7. С левой стороны – ВКФ PSS (ZC); с правой стороны – ВКФ PSS (m-DPSK) 

Таблица 2. Результаты вычислений MF апериодических АКФ и ВКФ PSS, построенного на последовательностях ZC, Fr,  
m-DPSK в идеальном и Рэлеевском канале с задержками ETU, EVA 

Апериодические 
АКФ/ВКФ ZC, 

Fr, m-DPSK 

АКФ  
(m-DPSK) 

АКФ 
(Frank) 

АКФ 
(ZC) 

ВКФ (m-
DPSK) 
(ETU) 

ВКФ 
(Fr) 

(ETU) 

ВКФ 
(ZC) 

(ETU) 

ВКФ (m-
DPSK) 
(EVA) 

ВКФ 
(Fr) 

(EVA) 

ВКФ 
(ZC) 

(EVA) 
MFАКФ 22.985 24.807 21.48       
MFВКФ    13.517 16.680 13.351 20.061 22.695 18.678 

 
В табл. 1 представлены результаты вычислений MF 

ВКФ PSS, построенного на последовательностях Фрэн-
ка Fr(31,64)+Fr(11,64), Задова-Чу ZC(51,127)+0 и m-
DPSK(128) в зависимости от ОСШ Гауссовского канала. 

в). Апериодические ВКФ 8 одинаковых последова-
тельностей (m-DPSK, ZC, Fr) с n = 128, с инверсией 
первой последовательности, заполняющих символ PSS 
и тех же конфигураций последовательностей, прошед-
ших модель Рэлеевского канала с вариантом профилей 
задержек ETU, EVA и параметрах канала ОСШ = 10 дБ, 
Fdop = 50 Гц. 

На рис. 6 представлена «гребенка» ВКФ PSS, по-
строенного на OFDM сигналах последовательностей 
Фрэнка 8х128 элементов Fr(31,64)+Fr(11,64) – синий 

цвет графика, m-DPSK(128) – красный цвет. Взаимно-
корреляционные функции построены на исходных OFDM 
сигналах последовательностей Фрэнка и m-
последовательностей с модуляцией DPSK и тех же по-
следовательностях, прошедших модель Рэлеевского 
канала MATLAB с профилями задержек ETU 

На рис. 7 представлена «гребенка» ВКФ PSS, по-
строенного на OFDM сигналах последовательностей 
Задова-Чу ZC(51,127)+0 – черный цвет графика, m-
DPSK(128) – красный цвет. ВКФ построены на исходных 
OFDM сигналах Задова-Чу и m-последовательностей с 
модуляцией DPSK и тех же OFDM сигналах, прошедших 
модель Рэлеевского канала MATLAB с профилями за-
держек ETU. 
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 а) б) 

 
 в) 

Рис. 8. а) Циклическая АКФ PSS, построенного на конкатенации Fr (13,64+Fr(11,64);  
б) Циклическая АКФ PSS, построенного на последовательности ZC (51,127)+0;  

в) Циклическая АКФ PSS, построенного на m-последовательности с DPSK-модуляцией 

Таблица 3. Результаты вычислений MF, PAPR для АКФ m-DPSK, ZC, Fr  

Циклическая АКФ (ZC, Fr, m-DPSK) ETU АКФ (m-DPSK) АКФ(Frank) АКФ(ZC) 
MF 26.1349 26.1687 22.8402 

PAPR 3.7196 3.4716 3.5828 
 

В табл. 2 представлены результаты вычислений ме-
рит-факторов АКФ и ВКФ PSS, построенного на после-
довательностях Фрэнка Fr(31,64)+Fr(11,64), Задова-Чу 
ZC(51,127)+0 и m-DPSK(128) без прохождения канала 
(АКФ) и при прохождении Рэлеевского канала (ВКФ) с 
профилями задержек ETU, EVA.  

Для последовательностей Фрэнка отклонение от 
идеального временного положения пиков ВКФ ± 1..2 
выборки приходится на 10…12 пиков из 13, для после-
довательностей Задова-Чу – на 6…10 пиков из 13, для 
m-последовательностей с DPSK модуляцией – на 
10…12 пиков из 13. Следует учесть, что при более точ-
ном «попадании» пиков АКФ, ВКФ для последователь-
ностей ZC в точки идеального временного положения 
пиков, боковые лепестки вблизи центрального пика 
АКФ, ВКФ ZC  соразмерны по амплитуде с пиками «гре-
бенки» АКФ, ВКФ (см. рис. 3,4,6,7), что снижает MF АКФ, 
ВКФ ZC и не характерно для последовательностей 
Фрэнка и m-последовательностей с DPSK модуляцией. 

г). Циклические ВКФ 8 одинаковых последователь-
ностей (m-DPSK, Fr, ZC) с n = 128 с инверсией первой 
последовательности, заполняющих символ PSS и тех 
же конфигураций последовательностей, прошедших 
модель Рэлеевского канала с вариантом профилей за-
держек плотной городской застройки (ETU)  и парамет-
рах канала ОСШ = 10 дБ, Fdop = 50 Гц.  

На рис. 8, а, б, в представлены циклические АКФ PSS 
для моделей двух последовательно поступающих усе-
ченных DL кадров с OFDM модуляцией символа PSS, 
построенного на последовательностях 8х128 элементов 
Задова-Чу ZC(51,127) – синий цвет графика, Фрэнка 
Fr(13,64)+Fr(11,64) – сиреневый цвет графика,  m-
DPSK(128) – красный цвет. ВКФ построены на исходных 
OFDM сигналах Фрэнка, Задова-Чу и m-последо-
вательностей с модуляцией DPSK и тех же OFDM сигна-
лах, прошедших модель Рэлеевского канала MATLAB с 
профилями задержек ETU. 

В табл. 3 представлены результаты вычислений MF 
циклических АКФ OFDM символов моделей усеченных 
кадров DL с PSS, построенного на последовательностях 
Фрэнка Fr(13,64)+Fr(11,64), Задова-Чу ZC(51,127)+0 и m-
DPSK(128) при прохождении Рэлеевского канала с про-
филями задержек ETU и пик-факторов (PAPR) DL кадров 
с символами PSS. 

Заключение 

По результатам моделирования прохождения DL 
кадров с OFDM символами PSS, построенными согласно 
формированию синхросигнала PSS низкоорбитальной 
системы спутниковой связи [1] на 8 подпоследователь-
ностях длиной по 128 элементов с различными вариан-
тами подпоследовательностей: Фрэнка, Задова-Чу и 
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исходной последовательности PSS – m-последователь-
ности с модуляцией DPSK (dφ = π/2) наибольшая вели-
чина мерит–фактора при наименьшей величине пик-
фактора сигналов кадра – для случая заполнения PSS  
8 подпоследовательностями, сформированными 2-я 
конкатенированными последовательностями Фрэнка 
длиной по 64 элемента и параметром p в вариантах 
p = 11, 13, 31 (см. табл. 1, 2, 3). В статье не ставилась 
цель выбора наилучшей последовательности Фрэнка по 
параметру p: уровень боковых лепестков АКФ последо-
вательностей Фрэнка ниже, чем для выбранной (либо 
любой дугой) последовательности Задова-Чу с N = 127; 
к тому же, апериодическая АКФ Фрэнка равна 0 с пери-
одом √N [14] (рис. 1, с. 44). Из этого следует вывод о 
предпочтении применения последовательностей Фрэн-
ка или их комбинаций для заполнения синхросигнала 
PSS кадра низкоорбитальной системы спутниковой свя-
зи для повышения скорости синхронизации как в Гаус-
совском канале связи для больших высот расположения 
спутников, так и при низком расположении спутников в 
системах LEO-to-Earth и «Умный город» при работе в 
условиях Рэлеевского канала.  
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