
Цифровая Обработка Сигналов №2/2024 

 
 

27

Рассматриваются алгоритмы обработки сигналов, представ-
ляемых последовательностями импульсов (спайков), формируемы-
ми IAF-нейронами (Integrate-and-Fire) спайковых нейронных сетей. 
Проанализирована связь «вход-выход» IАF-нейрона и предложена 
спайковая модель входных сигналов. Обсуждаются два варианта 
применения этой модели для спектрального анализа. В первом ва-
рианте предлагается алгоритм вычисления коэффициентов ряда 
Фурье на основе непосредственного преобразования анализируемо-
го сигнала в последовательность спайков. Во втором варианте, 
названным инверсным кодированием, в импульсную форму преобра-
зуются базисные функции ряда Фурье. Предлагается новый алго-
ритм вычисления спектральных коэффициентов, который сводит-
ся к суммированию отсчетов анализируемого сигнала в моменты 
времени, соответствующие формированию спайков. Основным 
преимуществом рассматриваемых алгоритмов является их низкая 
сложность и возможность реализации на вычислителях с ограни-
ченными ресурсами за счет исключения операций умножения. До-
полнительным положительным свойством алгоритмов является 
отсутствие эффекта наложения частот при цифровой обработке 
в силу нерегулярности используемых отсчетов сигналов. Алгорит-
мы ориентированы на применение в системах Интернета вещей, 
граничного искусственного интеллекта, мобильных вычислениях и 
других областях. 
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SPIKE MODEL OF SIGNALS AND ITS APPLICATION TO SPECTRAL ANALYSIS 

Bondarev V.N.  
Algorithms for processing signals represented by a sequence of impulses (spikes) formed by IAF neurons (Integrate-and-Fire) of spiking 
neural networks are considered. The input-output relationship of the IAF neuron is analyzed and a spike model for representing input 
signals is proposed. Two options for using this model for spectral analysis are discussed. The first option proposes an algorithm that 
calculates the coefficients of the Fourier series based on the direct conversion of the analyzed signal into a sequence of spikes. In the 
second option, called inverse coding, the basis functions of the Fourier series are converted into impulse form. A new algorithm for cal-
culating spectral coefficients is proposed, which reduces to summing the samples of the analyzed signal at the time points correspond-
ing to the appearance of spikes. The main advantage of the algorithms under consideration is their low complexity and the ability to be 
implemented on computers with limited resources by eliminating multiplication operations. An additional positive property of the algo-
rithms is the absence of the aliasing effect during digital processing due to the irregularity of signal samples. The algorithms are focused 
on application in Internet of Things systems, Edge Artificial Intelligence, mobile computing and other areas. 
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Введение 

Различные модели искусственных нейрон-
ных сетей широко применяются в цифровой 
обработке сигналов [1, 2]. При этом в послед-
нее время существенное внимание уделяется 
спайковым нейронным сетям [2-6]. Спайковые 
нейронные сети имеют большой потенциал для 
применения в таких областях, как автономные 
роботизированные системы, мобильные вычис-
ления, различные системы биомониторинга, ин-
терфейсы мозг-компьютер, нейропротезирова-
ние и др. [7-9]. Для этих областей характерны 
следующие требования, предъявляемые к сред-
ствам обработки: возможность оперативной об-
работки сигналов вблизи источника данных, ре-
ализация на вычислителях с ограниченными 
ресурсами, низкое энергопотребление. Модели 
спайковых нейронных вычислений являются 
многообещающим подходом для удовлетворения 
этих требований [3], [9]. Спайковые нейросети основа-
ны на биологически инспирированных моделях нейронов 
[10, 11]. В отличие от формального искусственного ней-
рона, спайковые нейроны взамодействуют посредством 
коротких электрических импульсов, известных как потен-
циалы действия или спайки. С точки зрения обработки 
сигналов, спайковые нейроны реализуют время-импульс-
ное кодирование информации [12], которое потенциально 
обеспечивает более низкое энергопотребление и упро-
щает реализацию алгоритмов обработки. 

Анализ представлений сигналов в виде последова-
тельностей спайков, а также алгоритмов обработки сиг-

налов на основе таких представлений важен для даль-
нейшего развития систем реального времени в области 
мобильных вычислений, Интернета вещей (Internet of 
Things, IoT), граничного искусственного интеллекта 
(Edge Artificial Intelligence, EAI), робототехнике [3], [8], [9]. 

Известны несколько подходов к цифровой обработке 
сигналов, представленных последовательностью спай-
ков [12-15]. В [12-14] авторы рассматривают алгоритмы 
предварительного восстановления непрерывных сигна-
лов по последовательности спайков с возможным даль-
нейшим применением различных традиционных схем 
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обработки сигналов. Такой подход снижает потенциаль-
ные преимущества спайкового представления сигналов, 
отмеченные выше.  

Альтернативный подход основан на применении опе-
раций обработки сигналов непосредственно к серии 
спайков, без восстановления исходных сигналов [15]. В 
рамках такого подхода построены онлайн-алгоритмы 
арифметических операций (сложение, умножение) и 
свертки последовательностей спайков, подходящие для 
приложений интернета вещей с отношением сигнал-шум 
(ОСШ) от 30 до 70 дБ [15]. Вместе с тем указанные алго-
ритмы остаются относительно сложными, так как пред-
полагают проведение объемных вычислений с использо-
ванием значений межспайковых интервалов времени. 

С целью построения более простых алгоритмов об-
работки сигналов, представленных последовательно-
стью спайков, в статье предлагается импульсная мо-
дель «вход-выход» спайкового нейрона, реализуемого в 
виде интегратора с порогом (Integrate-and-Fire, IAF). 
Анализируются возможности применения этой модели 
для цифрового спектрального анализа и линейной 
фильтрации. Рассматриваются две схемы применения 
предложенной модели. В соответствии с первой схемой 
предлагается алгоритм вычисления коэффициентов 
ряда Фурье, который основан на непосредственном 
преобразовании анализируемого сигнала в последова-
тельность спайков с помощью биполярного IAF-нейро-
на. Определяются ограничения алгоритма при исполь-
зовании IAF-нейронов с фиксированным порогом сраба-

тывания и исследуются ошибки вычислений спектраль-
ных коэффициентов. В рамках второй схемы, которая 
названа схемой инверсного спайкового кодирования, 
предлагается новый алгоритм вычисления коэффициен-
тов ряда Фурье, основанный на представлении базисных 
функций последовательностью спайков. Исследуются 
аппроксимирующие свойства алгоритма и анализирует-
ся влияние дискретизации. С целью иллюстрации прак-
тических возможностей алгоритма вычисляется кратко-
временный спайк-спектр речевого сигнала, который 
сравнивается с аналогичным спектром, вычисляемым на 
основе дискретного преобразования Фурье (ДПФ). 

Спайковая модель сигналов  

Рассмотрим простую модель биполярного IAF-
нейрона с одним входом (рис. 1, а) [13]. Модель состоит 
из интегратора и компаратора. Входной аналоговый сиг-
нал u(t) поступает на вход интегратора, выходной сигнал 
которого сравнивается с положительным или отрица-
тельным порогом ±s. Когда выходной сигнал интегратора 
y(t) достигает любого из этих порогов, на выходе нейро-
на формируется выходной импульс со знаком 

( ( )),n nsign y t   где nt  – время появления импульса. 
Выходной импульс сбрасывает интегратор и весь про-
цесс повторяется. Временные диаграммы сигналов IAF-
нейрона изображены на рис. 1, б. Выход рассматривае-
мой модели нейрона представляется виде последова-
тельности разнополярных импульсов с амплитудными 
значениями +1 или -1.  

 

 
а) б) 

 
в) 

Рис. 1. Спайковый нейрон с одним входом: а) модель IAF-нейрона;  
б) диаграммы сигналов IAF-нейрона; в) функциональная модель IAF-нейрона 
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Так как интегрирование выполняется на интервале 
между выходными импульсами, то точное условие сра-
батывания нейрона запишется в виде 

1
( ) ( ) ,     1, 2,3,n

n

t

n t
y t u t dt s n



     (1) 

Рассмотренная модель биполярного IAF-нейрона 
дает представление о механизме его функционирова-
ния и может применяться в ходе компьютерного моде-
лирования. Однако для обработки сигналов необходима 
модель IAF-нейрона, которая позволяет установить 
функциональную связь между входным сигналом u(t) и 
выходной последовательностью импульсов. 

Рассмотрим эквивалентную модель IAF-нейрона 
(рис. 1,в) [16], которая состоит из интегратора, равно-
мерного квантователя и дифференциатора. В соответ-
ствии с этой моделью импульсы на выходе IAF-нейрона 
формируются, когда выходной сигнал интегратора y(t) 
достигает очередного значения порога, кратного s. В 
этом случае выходной сигнал квантователя z(t) можно 
представить в виде суммы единичных ступенчатых 
функций Хевисайда 1(t)	: 

( )  1( ),  n n n
n

z t s t t t t    . (2) 

Если формально выполнить дифференцирование 
выражения (2) по времени, то выходная последова-
тельность импульсов на выходе нейрона может быть 
представлена суммой дельта функций Дирака ( )t  [17, 
18]: 

( )  ( )n n
n

f t s t t    . (3) 

Так как z(t) с учетом (2) соответствует ступенчатой 
аппроксимации выходного сигнала интегратора y(t), то 
f(t), как производная от ( ),z t  является своеобразной 
импульсной аппроксимацией самого входного сигнала 

( ).u t  Следовательно, входной сигнал ( )u t  можно пред-

ставить его моделью ( )Mu t  в виде 

 ( )( )M n n
n

u t s t t    . (4) 

Далее будем называть (4) спайковой моделью вход-
ного сигнала. Модель (4) позволяет значительно упро-
стить преобразования, выполняемые в ходе обработки 
сигналов. Вместе с тем следует отметить, что такое 
представление сигналов является идеализацией, так 
как дельта функции в (4) всюду равны нулю, кроме мо-
ментов времени .nt t  Поэтому (4) можно использовать 
только при интегральных преобразованиях сигналов, 
представляемых последовательностью спайков [17]. 
Например, в ходе линейной фильтрации 

0

( ) ( ) ( )
t

y t u h t d       (5) 

или определения текущего спектра [19] 

0

( , )  ( ) exp( )
t

U t u i d      , (6) 

где h(t) – импульсная характеристика линейного филь-
тра.  

Подставив в (5) или (6) вместо входного сигнала u(t) 
спайковую модель (4), получим аппроксимирующие вы-

ражения, которые можно использовать при решении 
задач фильтрации или спектрального анализа сигналов, 
представляемых последовательностью спайков [17, 18]: 

( )  ( ),M n n
n

y t s h t t    (7) 

,exp( )( , )  M n n
n

U t s i t       0,nt t . (8) 

Как видно из выражений (7) и (8), отображение сиг-
налов во время-импульсную область с помощью спайко-
вого нейрона позволяет построить эффективные в вы-
числительном отношении алгоритмы обработки сигна-
лов. Поскольку 1,n    то вычисление свертки или пре-
образования Фурье на основе (7) или (8) не требуют 
операции умножения и для вычисления ( )My t  или 

( , )MU t   необходимо лишь суммировать значения ( )h t
или exp( )i t  в моменты времени ,nt  соответствующие 
появлению импульсов на выходе IАF-нейрона. Это свой-
ство выражений (7) и (8) позволяет использовать для их 
реализации простые вычислительные средства. 

Построение линейных фильтров для сигналов, пред-
ставленных последовательностью спайков, рассматри-
валось ранее в работах [18, 20, 21]. Ниже рассмотрим 
применение спайковой модели сигналов (4) для целей 
спектрального анализа. 

Спектральный анализ  
на основе непосредственного преобразования 
сигналов в последовательность спайков 

Рассмотрим представление сигнала u(t) в виде ком-
плексного ряда Фурье на интервале времени [0, T]. Ко-
эффициенты такого ряда, образующие частотный спектр 
сигнала u(t), определятся из выражения [19] 

1 1
0

1( ) ( ) exp( ) ,
T

U k u t i kt dt
T

     1 2 T    (9) 

где k – целое. Заменив u(t) в (9) спайковой моделью (4), 
получим аппроксимацию спектра (9), которую будем 
называть спайк-спектром входного сигнала u(t) и обо-
значать 1( )MU k : 

1 1
1

( ) exp( ,)
N

M n n
n

sU k i kt
T 

       0,nt T  (10) 

где N – количество импульсов на периоде гармоники с 
частотой 1.  Выражение (10) позволяет построить алго-
ритм вычисления спектральных коэффициентов, заклю-
чающийся в суммировании выборок комплексных экспо-
нент в моменты времени, соответствующие появлению 
спайков на выходе IAF-нейрона. Отметим, что в (10) мо-
менты взятия отсчетов экспонент являются нерегуляр-
ными и задаются точными моментами времени сраба-
тывания IAF-нейрона. Следовательно, при вычислении 
спайк-спектра (10) не будет наблюдаться эффект нало-
жения частот, свойственный регулярной дискретизации. 
Для прямого вычисления (10) необходимо выполнить 
2KN операций суммирования, где K – количество вы-
числяемых спектральных коэффициентов. Замена опе-
раций суммирования с умножением, которые, например, 
используются при вычислении спектра сигналов с помо-
щью ДПФ, только на операции суммирования является 
важным преимуществом (10). 
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Чтобы выяснить точностные свойства (10), рассмот-
рим функциональную модель IAF-нейрона (см. рис. 1, в) 
и найдем выражение для вычисления спайк-спектра 
элементарного гармонического входного сигнала 

1( ) cos( ).u t t   В этом случае выход интегратора при 
нулевых начальных условиях будет равен 

1 1( ) 1 sin( ).ny t t     На интервале времени [0, T/4] вы-

ходной сигнал интегратора ( )y t  монотонно возрастает 

по амплитуде от 0 до 11 .  Пусть 1 1 ( ),qs N   где qN
– число выходных импульсов, формируемых IAF-
нейроном на четверти периода T. Тогда временные мо-
менты срабатывания  IAF-нейрона nt определятся из 
уравнения 

1 11 sin( ) ,  [1, ]n qt ns n N     . (11) 

Решив (11), получим 

11 arcsin( ),n qt n N    при [0, / 4],nt T  (12) 

и 

11 [ arcsin(1 )],n qt n N      при ( / 4, / 2].nt T T  (13) 

Для интервала времени ( 2, ]T T  значения nt  вы-
числяются также с помощью (12) и (13) с дополнитель-
ным смещением на время 2.T  Подставив выражения 

для nt  в (10), получим 

1

1

1 (1 ( 1) ) 
2

[exp( arcsin( ) exp( arcsin(1 )].

( )

q

k
M

q

N

q q
n

U k
N

ik n N ik n N


    


   
 (14) 

Из (14) следует, что спайк-спектр гармонического 
сигнала, помимо спектрального коэффициента 1( )MU   
на основной частоте, будет дополнительно содержать 
ложные спектральные составляющие 1( )MU k 	  при  
нечетных k. Спектральные составляющие для четных k 
равны нулю.  

На рис. 2, а показан модуль спайк-спектра гармони-
ческого сигнала, вычисленный с помощью выражения 
(14). Из рис. 2, а следует, что значения модуля нечет-
ных спектральных коэффициентов 1( ) |,| MU k  (k > 1) 
являются незначительными. Эти значения уменьшают-
ся при снижении порога s и, соответственно, при увели-
чении числа спайков 4 ,qN N  приходящихся на пери-

од основной гармоники. На рис. 2, б изображена зависи-
мость ОСШ от N, которая позволяет оценить точность 
аппроксимации спектра гармонического сигнала при ис-
пользовании (14). ОСШ определялось как логарифмиче-
ское отношение суммы квадратов спектральных коэф-
фициентов 2

1| ( ) |U k  к сумме квадратов ошибок 
2

1 1( (| ( ) | | ) |)MU k U k    для трех первых дополнитель-
ных гармоник спайк-спектра.  

Представляет интерес оценка свойств спайк-спектра 
(10) для более сложных сигналов. С этой целью вычис-
лялся спайк-спектр полигармонического сигнала. Для 
этого было проведено компьютерное моделирование, 
поскольку найти аналитически выражения для вычисле-
ния моментов времени nt  в этом случае не представля-
ется возможным. При моделировании полигармониче-
ский входной сигнал задавался в виде суммы L гармо-
нических колебаний одинаковой амплитуды с частотами, 
кратными основной частоте 1 :  

   1
1
cos

L

k
u t kt



  . (15) 

На рис. 3, а изображен вычисленный на основе (10) 
спайк-спектр полигармонического сигнала (15) при L = 32 
и N = 800. Как следует из рис. 3, а спайк-спектр полигар-
моничекого сигнала содержит ложные спектральные 
компоненты при k > 32. Их уровень также снижается при 
увеличении числа спайков N, приходящихся на период 
основной гармоники. На рис. 3, б показана зависимость 
значений ОСШ для полигармонического сигнала от N, 
где ОСШ определялось как логарифмическое отношение 
суммы квадратов спектральных коэффициентов 

2
1| ( ) |U k  к сумме квадратов ошибок 1(| ( ) |U k   

2
1 ) |(| )MU k   в диапазоне частот 1[ ,  12 ].L  Из 

рис. 3, б следует, что для полигармонического сигнала 
ОСШ имеет максимальное значение примерно равное 
40 дБ при N = 1000, а для гармонического сигнала при 
том же значении N ОСШ примерно равно 52 дБ.  

Более низкие значения ОСШ для полигармоническо-
го сигнала (15) объясняются большим динамическим 
диапазоном такого сигнала по сравнению с гармониче-
ским сигналом и постоянным порогом s, который в этом 
случае рассматривается как шаг квантования сигнала по 
амплитуде. Из-за этого для входного сигнала с малой 
амплитудой IAF-нейрон формирует недостаточное  коли- 

 
 а) б) 

Рис. 2. Гармонический сигнал: a) спайк-спектр (14), N = 400; б) отношение сигнал-шум 
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 а) б) 

Рис. 3. Полигармонический сигнал: а) спайк-спектр (10), N = 800; б) отношение сигнал-шум 

чество спайков, что приводит к снижению точности ап-
проксимации спектра сигнала при использовании (10). 
Чтобы преодолеть этот недостаток, следует для раз-
личных амплитудных значений входного сигнала ис-
пользовать разные значения порога s. Однако это при-
ведет к вынужденному включению в формулу (10) опе-
рации умножения, что снизит ее вычислительные пре-
имущества.  

В ходе моделирования при вычислении спайк-
спектра полигармонического сигнала осуществлялась 
регулярная дискретизация времени. При этом исполь-
зовалась относительно высокая частота дискретизации 
для снижения влияния эффекта наложения частот. 
Необходимость применения при моделировании высо-
кой частоты дискретизации обусловлена тем, что вход-
ной сигнал IAF-нейрона должен рассматриваться как 
непрерывный и его амплитудные значения должны 
отображаться в точные моменты времени с помощью 
IAF-нейрона. 

Спектральный анализ на основе представления 
базисных функций последовательностью спайков   

Для устранения указанных ограничений, свойствен-
ных спайк-спектру (10), а также выражениям (7) и (8), 
рассмотрим схему инверсного спайкового кодирования. 
В этом случае в последовательность спайков преобра-
зуется не обрабатываемый сигнал ( )u t  в выражении 
(9), а базисные комплексные экспоненциальные функ-
ции 1exp( ).i kt   Поскольку эти функции известны, то 
можно заранее представить их в виде последователь-
ности спайков с необходимой точностью.  

Перепишем (9) в виде действительной и мнимой со-
ставляющих 

1 1
0

1Re ( )  ( ) cos( )
T

U k u t kt dt
T

   , (16) 

1 1
0

1Im ( )  ( )sin( )
T

U k u t kt dt
T

   . (17) 

Выполним спайк-кодирование базисных тригономет-
рических функций для действительных (16) и мнимых 
составляющих (17) спектра (9): 

1
1cos( ) ( ) ( ( ))

kN

n

re re
k n nkt s k t t k



     , (18) 

1
1sin( ) ( ) ( ( ))

kN
im im

n
k n nkt s k t t k



     , (19) 

где kN  – количество импульсов на периоде k-й базис-

ной функции; ( ),re
nt k  ( )n

imt k  – моменты времени расста-
новки импульсов, coответственно, в действительных и 
мнимых последовательностях спайков; ( ),re

n k  ( )n
im k  – 

знаки импульсов в действительных и мнимых последо-
вательностях спайков. 

Подставив (18) и (19) в (16) и (17), получим 

1
1

Re ( ) ( ) ( ( ))
kN

re ek
M n

r

n
n

s
U k k u t k

T 

   ,  (20) 

1
1Im ( ) ( ) ( ( ))

k
k

M n n

N
im im

n

s
U k k u t k

T 

   . (21) 

Выражения (20) и (21), аналогично (10), позволяют 
построить алгоритм спектрального анализа, не требую-
щий операций умножения входе вычислений. В соответ-
ствии с (20) и (21), действительная и мнимая компонен-
ты ряда Фурье вычисляются путем суммирования выбо-
рок входного сигнала в моменты времени ( )n

ret k  и 

( ).n
imt k  

Моменты времени ( )n
ret k  и ( )n

imt k 	могут быть вычис-
лены и запомнены в памяти заранее. Для этого рас-
смотрим еще раз функциональную схему биполярного 
IАF-нейрона (см. рис. 1, в). Если на вход IAF-нейрона 
подать базисную функцию 1sin( ),kt  то, аналогично (11), 

при 11 ( )k qs kN   можно получить выражения для вы-

числения моментов времени ( )n
imt k : 

 
1

1( ) arccos(1 ),   [0, 2)n
im im
n q kt k n N t k T

k
  


, (22) 

1

1( ) (2 arccos( 1),   

.( ) [ 2 ],

n q

k

m

k

i

im
n

t k n N
k

t k T T

  




 (23) 

где kT  – период базисной функции с частотой 1 ,k  

n = 1,2,…2 .qN  Моменты времени ( )n
ret k  с учетом 

свойств базисной функции 1cos( )kt  можно получить 
путём сдвига и перестановки соответствующих значений 

( ).n
imt k  

Следует отметить, что при выполнении спайк-
кодирования базисных функций для каждой из них зада-
вался индивидуальный порог ,ks  обеспечивающий оди-

наковое количество импульсов qN  на четверти периода 
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базисной функции. Это значительно повышает точность 
аппроксимации спектральных коэффициентов и обеспе-
чивает дополнительный контроль над процессом отоб-
ражения базисных функций во время-импульсную об-
ласть.   

На рис. 4, а изображены спектральные коэффициен-
ты ряда Фурье для полигармонического сигнала (15), 
которые вычислялись на основе (20) и (21) путем сум-
мирования отсчетов входного сигнала ( )u t  в заранее 

вычисленные моменты времени ( )n
ret k  и ( ).n

imt k  Из 
сравнения рис. 3, б и рис. 4, б следует, что инверсное 
спайк-кодирование позволяет увеличить значения ОСШ. 
Кроме того, поскольку выборки из ( )u t  осуществляются 
в нерегулярные моменты времени, то эффект наложе-
ния частот при  вычислении спайк-спектра на основе 
(20) и (21) отсутствует. Это важное потенциальное пре-
имущество данного алгоритма вычисления спектраль-
ных коэффициентов.  

Спайк-спектры дискретных сигналов 

Если входной сигнал является дискретным и пред-
ставлен своими регулярными отсчетами ( ),su nT  где  

sT  – период дискретизации, то это приводит к появле-
нию эффекта наложения частот. Кроме этого, можно 
показать, что замена в выражении (9) непрерывных 
значений ( )u t кусочно-постоянными значениями ( )su nT  

на интервале sT  приводит к дополнительному умноже-
нию модуля спектральных коэффициентов, вычисляе-
мых с помощью (20) и (21), на значения функции 

1 1 1( ) sin( 2) / ( 2)s sw k kT kT    . Эта функция соответ-

ствует амплитудно-частотной характеристике прямо-
угольного временного окна длительностью ,sT  которое 
неявно применяется в этом случае. На рис. 5а изобра-
жен вычисленный на основе (20) – (21) спайк-спектр дис-
кретного полигармонического сигнала ( ),su nT  где ось 
частот нормирована относительно частоты дискретиза-
ции. Из-за частотных свойств упомянутого прямоуголь-
ного временного окна спектральные коэффициенты в 
основной полосе частот частично подавляются, а также 
подавляются повторяющиеся копии спектра (отмечен-
ные на рис. 5, а как ДПФ-спектр).  

Поскольку частотные свойства прямоугольного окна 
известны, значения спектральных коэффициентов в ос-
новной полосе частот легко скорректировать, умножив 
их на обратные значения 1( ).w k  На рис. 5, б изображен 
спайк-спектр дискретного полигармонического сигнала 
(15) до и после коррекции. В результате коррекции ОСШ 
увеличилось с 22,8 дБ до 41,7 дБ. 

Аналогичные эффекты, связанные с дискретизацией 
входного сигнала, также наблюдаются и при вычислении 
спайк-спектра сигнала ( )su nT с помощью (10).  

Для оценки практической возможности определения 
спектров реальных сигналов на основе (20) и (21) был 
вычислен кратковременный спектр речи с использова-
нием схемы инверсного спайк-кодирования. Анализиру-
емый речевой сигнал с частотой дискретизации 22050 Гц 
соответствовал гласной фонеме и содержал 512 отсче-
тов. Кратковременный спайк-спектр речевого сигнала, 
вычисленный с использованием (20) и (21) при N = 200 и 
K = 256, изображен на рис. 6. Для сравнения на рис. 6 
также показан кратковременный  спектр  речевого сигна- 

 
 а) б) 

Рис. 4. Полигармонический сигнал: а) спайк-спектр (20)-(21), N = 800; б) отношение сигнал-шум 

 
 а) б) 

Рис.5. Спайк-спектр дискретного полигармонического сигнала: а) эффекты дискретизации;  
б) значения спектральных коэффициентов до и после коррекции 
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Рис. 6. Сопоставление кратковременных спектров речевого сигнала 

ла, вычисленный с помощью ДПФ. Из рис. 6 следует, 
что спайк-спектр речи, вычисленный на основе (20) и 
(21), без дополнительной коррекции имеет заметные 
отличия от ДПФ-спектра в диапазоне частот выше 
5,0 КГц. После коррекции значений спектральных со-
ставляющих спайк-спектра путем их умножения на об-
ратные значения 1( ),w k  спайк-спектр речи и ДПФ-
спектр речи практически совпали.  

Чтобы оценить количественное отличие спайк-
спектра речевого сигнала от его ДПФ спектра, была 
вычислена относительная среднеквадратическая ошиб-
ка (ОСКО). После коррекции спайк-спектра обратными 
значениями ( )w   ОСКО составила 6,4·10-5 при N = 200. 
При уменьшении количества импульсов до N = 20 отно-
сительная среднеквадратическая ошибка вычисления 
спайк-спектра не превысила 4,3·10-3. 

Заключение 

В статье рассмотрены алгоритмы обработки сигна-
лов, представляемых последовательностью спайков, 
формируемых IАF-нейронами спайковых нейросетей. 
Эти алгоритмы основаны на предложенной идеализи-
рованной спайковой модели непрерывных сигналов, 
которая представляет собой сумму дельта-функций со 
знаками и весом, определяемым порогом IАF-нейрона. 

Показано, что предложенная спайковая модель поз-
воляет получать алгоритмы линейной фильтрации и 
спектрального анализа сигналов, не использующие 
операции умножения. Это упрощает реализацию алго-
ритмов и представляет большой интерес в таких обла-
стях, как Интернет вещей, граничный искусственный 
интеллект, интерфейсы мозг-компьютер, мобильные 
вычисления и др. 

В статье рассматривается непосредственное спайк-
кодирование анализируемых сигналов и использование 
спайковой модели входного сигнала для вычисления 
спектральных коэффициентов ряда Фурье. Получено 
выражения для расчета спайк-спектра и исследованы 
его свойства для случаев гармонического и полигармо-
нического сигналов. Показано, что спайк-спектр свобо-
ден от наложения частот, поскольку его вычисление не 
предполагает регулярной дискретизации. Для оценки 
точности спайк-спектра вычислялось отношение сигнал-
шум. Точность аппроксимации спектра при использова-
нии предложенной спайковой модели сигналов критиче-
ски зависит от значения порога IAF-нейрона и, соответ-
ственно, от количества импульсов на периоде анализи-

руемой гармоники. Для элементарного гармонического 
сигнала ОСШ примерно равно 30 дБ при 100 импульсах 
на периоде гармоники. 

Для повышения точности вычислений была предло-
жена схема инверсного спайкового кодирования. В этом 
случае во время-импульсную область отображается не 
анализируемый сигнал, а базисные функции разложения 
Фурье. Поскольку эти функции известны, то можно зара-
нее представить их в виде последовательности спайков 
с необходимой точностью. Использование инверсного 
спайк-кодирования позволило получить новый алгоритм 
вычисления спектральных коэффициентов, заключаю-
щийся в суммировании выборок входного непрерывного 
сигнала в моменты времени, соответствующие появле-
нию спайков в представлениях базисных функций. Ком-
пьютерное моделирование подтвердило повышение 
точности аппроксимации спектра. ОСШ для гармониче-
ского сигнала увеличилось примерно до 50 дБ при 100 
импульсах на периоде гармоники. 

В ходе компьютерного моделирования также уста-
новлено, что при обработке дискретных сигналов с регу-
лярной дискретизацией в их спайк-спектре проявляется 
эффект наложения частот. При этом повторяющиеся 
спектральные компоненты в спайк-спектре дискретного 
сигнала частично ослабляются умножением на частот-
ные коэффициенты прямоугольного временного окна, 
длительность которого равна периоду дискретизации 
сигнала. Чтобы оценить практические свойства предло-
женных алгоритмов вычислялся кратковременный 
спектр речи с использованием схемы инверсного спайк-
кодирования. Сравнение спайк-спектра и ДПФ спектра 
речи показало, что относительная среднеквадратиче-
ская ошибка составляет 6,4·10-5 при 200 импульсах на 
периоде анализируемой гармоники. При уменьшении 
числа импульсов в десять раз ОСКО составила 4,3·10-3, 
что приемлемо для приложений, связанных с решением 
задач обработки речи.  
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НОВЫЕ КНИГИ 

 

Поборчая Н.Е. 
Методы и алгоритмы оценивания параметров канала связи в условиях априорной неопределенности в систе-
мах с приемником прямого преобразования: Учебное издание для вузов, М.: Изд-во «Горячая линия-Телеком», 
2023 г. 240 с.: ил. 

Изложены методы и алгоритмы совместного оценивания параметров сигнала (канала связи) в условиях априор-
ной неопределенности относительно статистических характеристик канала связи и законов распределения шумов. 
Особое внимание уделено системам с приемником прямого преобразования. Рассмотрены вопросы синтеза и анализа 
процедур оценивания для систем связи с одной передающей и приемной антенной (SISO), с несколькими передаю-
щими и приемными антеннами (MIMO), а также для систем с ортогональным частотным мультиплексированием 
(OFDM). 

Предложенные алгоритмы способствуют повышению помехоустойчивости приема информации или понижению 
вычислительной сложности процедур обработки сигнала. 

Для научных работников, инженеров и аспирантов. Может быть полезна студентам старших курсов и магистрантам, обучающимся по 
направлению подготовки «Радиотехника» и «Инфокоммуникационные технологии и системы связи». 

 

Шарамет А.В. 
Информационное обеспечение систем защиты летательных аппаратов от управляющих средств поражения: 
Научное издание, М.: Изд-во «Горячая линия-Телеком», 2023 г. 178 с.: ил. 

Рассмотрены вопросы повышения информативности бортового комплекса обороны летательного аппарата для 
увеличения эффективности его защиты от управляемого ракетного оружия за счет согласованного помехового, 
маневренного и огневого противодействия. Изложены и систематизированы основные проблемы по защите 
летательного аппарата от управляемых средств поражения, а также рассмотрены основные пути повышения 
эффективности его защиты от них. Даны оценочные расчеты отражательных свойств головок самонаведения 
управляемых ракет класса «воздух-воздух» и «земля-воздух», как объектов радиолокационного наблюдения. 
Представлено описание и проведен анализ результатов полунатурного экспериментального исследования. На основе 
векторно-алгебраического подхода к формализации задач определения координат объектов в многопозиционной 
измерительной системе проведен синтез алгоритма оценки декартовых координат атакующей ракеты по суммарно-
дальномерной информации.  

Для специалистов, занимающихся вопросами защиты летательных аппаратов, научных работников и инженеров. Может быть полезна ас-
пирантам и студентам вузов. 

 


