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Представлен вычислительно эффективный алгоритм сов-
местного обнаружения сигналов и оценивания их параметров в 
условиях широкополосного ионосферного канала. Показано, что 
разработанный алгоритм снижает требуемое количество опе-
раций в секунду в 105 раз по сравнению с классическим устрой-
ством в виде набора корреляторов. Сигналы, для которых зна-
чение коэффициента реального времени не превышает едини-
цы, могут быть обработаны в масштабе реального времени 
(длительность сигнала до 2 с). 
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The article presents a computationally efficient algorithm for the joint detection of signals and estimation of their parameters in a 
broadband ionospheric channel. It is shown that the developed algorithm reduces the required number of operations per second by 
105 times compared to the classical device in the form of a set of correlators. Signals for which the value of the real-time coefficient 
does not exceed one can be processed in real time (signal duration up to 2 seconds). 
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Введение  

В настоящее время декаметровый диапазон активно 
используется для осуществления связи в удалённых и 
труднодоступных регионах мира, в том числе в Арктике 
и Антарктике [1-3]. Актуальность применения декамет-
ровой радиосвязи в данных районах связана с тем, что 
такие системы могут предложить надёжные и дешёвые 
решения с минимальной инфраструктурой, хорошо себя 
зарекомендовавшие на протяжении десятилетий. 

Развитие систем связи декаметрового диапазона в 
настоящее время в Мире направлено на расширение 
используемой полосы частот с целью увеличения ско-
рости передачи информации или использования ча-
стотного ресурса на вторичной основе [4, 5]. Как прави-
ло, такие системы работают в полосе частот, не превы-
шающей 100 кГц, в которой искажения используемых 
сигналов, связанные с частотной дисперсией коэффи-
циента диэлектрической проницаемости плазмы ионо-
сферы Земли, не оказывают существенного влияния на 
качество связи. Указанные дисперсионные искажения с 
учетом нестационарности ионосферы Земли являются 
существенным препятствием для расширения спектра 
используемых сигналов свыше 100 кГц и приводят так-
же к снижению количественных показателей качества 
обнаружения и различения сигналов, а также к сниже-
нию показателей точности сопутствующего оценивания 
параметров этих сигналов.  

Обычно оценивание параметров сигнала происходит 
одновременно с его обнаружением по известной части 
радиограммы или зондирующего (обучающего) синхро-

импульса. В едином алгоритме может оцениваться мно-
жество параметров принимаемого сигнала: задержка 
сигнала, сдвиг частоты сигнала, амплитуда и начальная 
фаза сигнала. Повышение показателей качества обна-
ружения сигнала и оценивания его параметров может 
быть достигнуто путем дополнительного оценивания 
степени дисперсионных искажений сигнала с последую-
щей их компенсацией, что требует модификации извест-
ных алгоритмов и составляет актуальную задачу. 

Исследованию дисперсионный искажений широкопо-
лосных сигналов в ионосфере Земли в различных гео- и 
гелиофизических условиях посвящено множество работ. 
Можно выделить следующие научные школы, занимаю-
щихся непосредственно компенсацией дисперсионных 
искажений широкополосных сигналов в ионосферном 
канале в задачах связи и зондирования: Поволжский 
государственный технологический университет [6-8], 
Московский технический университет связи и информа-
тики [10-12] и работы сотрудников корпорации MITRE 
[13-15]. 

Однако данные исследования имеют ряд ограничений:  
– при исследовании совместного оценивания пара-

метров сигналов не учитывались возможные дисперси-
онные искажения сигналов, влияние этих искажений и 
процедуры их оценивания на точность оценивания дру-
гих параметров; 
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– при исследовании задачи обнаружения сигналов 
не учитывалось влияние дисперсионных искажений и 
процедуры их оценивания на качество обнаружения 
сигналов. 

Коллективом авторов статьи ведутся многолетние 
исследования в данной области [15-18]. По результатам 
исследований разработаны: алгоритм оптимального 
совместного оценивания четырех параметров широко-
полосного сигнала: частотного сдвига, задержки, 
начальной фазы и параметра дисперсионных искаже-
ний (в качестве которого выступает наклон дисперсион-
ной характеристики канала (ДХ)) [17]; алгоритм одно-
временного оптимального обнаружения сигнала и сов-
местного оптимального оценивания четырех парамет-
ров сигнала [18]. В данной статье представлены резуль-
таты разработки вычислительно эффективного алго-
ритма и устройство совместного обнаружения сигналов 
и оценивания их параметров на основе графического 
процессора в условиях широкополосного ионосферного 
канала. 

Основные теоретические положения алгоритма 

Equation Chapter (Next) Section 1Комплексная огиба-
ющая сигнала на входе устройства совместного обна-
ружения и оценивания параметров может быть пред-
ставлена в виде смеси комплексной огибающей полез-
ного сигнала, искаженного частотной дисперсией ионо-
сферного канала, и комплексной огибающей белого 
гауссовского шума [19]: 

 2( , , , ) ( )dj f i l tj
i d i l iy l t f s e e x s n 

       ,
0 1pi N    (1) 

где ( ) ( )x s x h s     – комплексная огибающая полезного 

сигнала, искажённого ионосферным каналом, ( )h s  – 
комплексная огибающая импульсной характеристик и 
(ИХ) ионосферного канала, ix  – комплексная огибаю-

щая полезного неискажённого сигнала, df  – сдвиг ча-
стоты,   – задержка, s  – наклон дисперсионной ха-
рактеристики – параметр, характеризующий дисперси-
онные искажения,   – неизвестный фазовый сдвиг, 

( )n t  – комплексная огибающая белого гауссовского 

шума с нулевым средним и дисперсией 2 ,ш  pN  – ко-
личество отсчетов. 

Решающая статистика может быть найдена в виде: 
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Из выражения (2) видно, что количество согласован-
ных фильтров для получения полного набора решаю-
щих статистик ˆˆ ˆ ˆ( , , , )i df s    определяется количеством 

возможных доплеровских сдвигов частоты df  и накло-
нов дисперсионной характеристики .s  Тогда: 

,
dmf f sN N N  (4) 

где mfN  – количество согласованных фильтров, 
dfN  – 

количество возможных доплеровских сдвигов частоты 

df  и sN  – количество возможных наклонов дисперсион-
ной характеристики .s  Большое количество СФ накла-
дывает высокие требования к вычислительной плат-
форме. Учет доплеровского сдвига частоты df  для его 
дальнейшей оценки можно проводить после согласован-
ной фильтрации, тогда выражение (2) можно предста-
вить в виде: 
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Вышеуказанное преобразование уменьшает требуе-
мое количество СФ до ,mf sN N  что позволяет суще-

ственно снизить вычислительные затраты. Однако, в 
условиях ионосферного канала из-за наличия доплеров-
ского сдвига частоты за время наблюдения комплексной 
огибающей на входе СФ происходит уход фазы, что при-
водит к потерям в ОСШ на выходе СФ. Чтобы миними-
зировать данные потери, будем проводить свертку не с 
опорным сигналом длительностью ,pN  а с сигналами: 

, ,
ppm n n m Nx x     0 1, 0 1,ppn N m M       (7) 

где ,p
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N
N

M
  M  – количество разбиений исходной 

последовательности.  
В данном случае согласованную фильтрацию можно 

выполнить с помощью СФ с серией последовательно-
стей, который представляет собой набор согласованных 
фильтров с последовательностями , .m nx  Сигнал на вы-

ходе каждого согласованного фильтра можно записать в 
виде: 
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ная огибающая импульсной характеристики фильтра, 
согласованного с m-й последовательностью. Далее вы-
полняется учет доплеровского сдвига частоты df : 
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Результирующий отклик согласованного фильтра 
может быть получен в виде: 
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Согласованную фильтрацию предлагается выпол-
нять с помощью алгоритма быстрой свертки «Overlap 
and Save» [20]. Согласованный фильтр с серией после-
довательностей и учетом доплеровских сдвигов частоты 
показан на рис. 1. 
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Рис. 1.  Согласованный фильтр с серией последовательностей 

 
Рис. 2. Схема устройства совместного обнаружения и оценки параметров сигнала 

Интервал допустимых значений доплеровского сдви-

га частоты составляет , ,
2 2

s s

pp pp

f f
N N

 
 
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 где sf  – часто-

та дискретизации сигнала. В пределах данного интер-
вала значение оцененного доплеровского сдвига часто-
ты может быть произвольным. Существенным недоста-
ток данной реализации заключается в требовании к ко-
личеству оперативной памяти для хранения массивов с 
комплексными гармоническими множителями. Полная 

схема устройства совместного обнаружения и оценки 
параметров сигнала приведена на рис.2. 

Данная схема представляет собой набор фильтров, 
согласованных с серией последовательностей, для все-
возможных значений наклона ДХ и решающее устрой-
ство, которое выполняет определение оцененных значе-
ний путем нахождения максимальной решающей стати-
стики для комбинации всех исследуемых в работе пара-
метров. 

Умножение на комплексные  экспоненты и последую- 
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Рис. 3. Согласованный фильтр с серией последовательностей  

с переборами по доплеровским сдвигам частоты через БПФ 

 
Рис. 4. Схема СФ с серией последовательностей 

щие суммирование для дальнейшей оценки доплеров-
ского сдвига частоты можно выполнить с помощью БПФ. 

Пусть ,s
d

f
f k
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Отсюда, выражение (11) может быть вычислено с 

помощью алгоритмов БПФ от , ( )m n s  для каждого k . 

Диапазон поиска доплеровских сдвигов частоты в дан-

ном случае равен : .
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s s

pp pp

f f
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 Данный алгоритм, в 

отличие от алгоритма с умножениями на комплексные 
экспоненты, позволяет выполнять оценку доплеровского 
сдвига частоты только для ,df k f   где 

: .
2 2

pp ppN N
k

 
  
 

 Схема СФ с серией последователь-

ностей с переборами по доплеровским сдвигам частоты 
через БПФ представлена на рис. 3. 

Особенности реализации алгоритма  
на графическом процессоре 

Согласованный фильтр c серией последовательно-
стей на графическом процессоре (GPU) реализуется с 
помощью алгоритма быстрой свертки «Overlap and 
Save» [20] и библиотеки параллельного вычисления 
БПФ и ОБПФ на GPU – clFFT, реализованной на 
OpenCL. Схема СФ с серией последовательностей на 
GPU изображена на рис. 4. Загрузка входных данных в 
GPU выполняется блоками по ppN  отсчетов. Загрузка 
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выполняется в циклический буфер ,inputB  размером 

( 1).ppN M   После загрузки очередного блока отсчетов, 

буфер inputB  подается на вычисление БПФ размером 

2 ppN  с перекрытием в ppN  отсчетов. Результаты БПФ 

записываются в буфер ,FFTB  размером 2 .ppN M  Отсче-

ты после БФП перемножаются с отсчетами частотных 
характеристик ( ), 0,1,..., 1.iH s i M   Результат пе-

ремножения записывается в буфер MULB  и подается на 
вычисление ОБПФ, размером 2 .ppN  Отсчеты после 

ОБПФ помещаются в буфер .IFFTB  Вторая половина из 
каждых 2 ppN  отсчетов является откликом фильтра 

, ( ),m n s  согласованного с m-й последовательностью. 

Полученные отклики передаются в модуль учета до-
плеровских сдвигов частоты и получения суммарной 
решающей статистики. Данный модуль выполнен в двух 
вариантах. Первый вариант заключается в прямом пе-
ремножение на комплексные экспоненты с последую-
щим суммированием откликов фильтров. Выполнение 
операций умножения на комплексные экспоненты вы-
полняется путем вычислений разных отсчетов решаю-
щей статистики с помощью разных рабочих элементов 
(WI – work item) GPU. Совокупность рабочих элементов 

,i jw  графического процессора представляется в виде 

матрицы ,W  размерностью 1 2R R  (см. рис. 27). Где 

1R  и 2R  – количество рабочих элементов в 1-м и 2-м 
измерении соответственно. Эти значения определяются 
реализацией GPU и должны учитываться при распа-
раллеливании алгоритма на GPU. 

 
Рис. 5. Совокупность рабочих элементов GPU 

В рамках имеющегося количества рабочих элемен-
тов, предлагается распараллелить вычисление всех 
отсчетов решающей статистики для всех возможных 
значений доплеровских сдвигов частоты .df  Требуемое 
количество рабочих элементов для вычисления отсче-
тов решающей статистики ( , )n df s  для одного значе-
ния доплеровского сдвига частоты равняется .ppN  

Максимальное количество рабочих элементов, прихо-
дящееся на вычисление отсчетов решающей статистики 

( , )n df s  для одного значения доплеровского сдвига 
частоты, можно рассчитать как:  

1 2
max_ _ exp .

d

items
f

R RN
N

 
  
  

 (13) 

Тогда реальное количество рабочих элементов 
определяется как: 

_ exp max_ _ expmin( , ).items items ppN N N  (14) 
В случае, когда требуемое количество рабочих эле-

ментов превышает максимальное – некоторые рабочие 
элементы будут рассчитывать несколько отсчетов ре-
шающей статистики ( , ).n df s  

При выполнении вычислений на GPU рабочие эле-
менты объединяются в рабочие группы (work group – 
WG). Наилучшая производительность достигается при 
установке размера рабочей группы _ _size work gpoupN   

в максимальный, который определяется конкретной ре-
ализацией GPU. Например, для графических процессо-
ров Nvidia максимальный размер рабочей группы 

_ _ 1024,size work gpoupN   а для графических процессоров 

AMD максимальный размер рабочей группы 
_ _ 256.size work gpoupN   Количество рабочих групп для вы-

числения отсчетов решающей статистики ( , )n df s  для 
одного значения доплеровского сдвига частоты опреде-
ляется выражением: 

_ exp
_

_ _

items
work group

size work group

N
N

N
 

  
  

  (15) 

Распределение вычислений между рабочими эле-
ментами и рабочими группами GPU показано на рис. 6. 
Данный рисунок показывает, что расчет значений реша-
ющей статистики ( , , )n df s    разбивается на 

dfN  групп 

по _ _ _work group size work groupN N  рабочих элементов. Каждая 

их данных групп выполняет расчет отсчетов решающей 
статистики ( , , )n df s    для одного из возможных значе-

ний доплеровского сдвига частоты .df  Тем самым по-
вышается производительность алгоритма за счет вы-
полнения параллельных вычислений.  

Второй вариант построения модуля учета доплеров-
ских сдвигов частоты и получения суммарной решающей 
статистики выполнен с помощью БПФ через библиотеку 
clFFT. Согласно выражению (11), взятие БФП необходи-
мо выполнять от n -х отсчетов всех откликов  , ( ).m n s  
Библиотека clFFT позволяет выполнить все необходи-
мые БПФ используя буфер IFFTB  без дополнительных 
операций с памятью (см. рисунок 7). Библиотека clFFT 
позволяет выполнить БПФ от всех n -х отсчетов для 
всех , ( ),m n s  0 1, 0 1ppn N m M       без дополни-
тельных копирований данных. Количество данных опе-
раций БПФ равно .M  Результат БПФ записывается в 
буфер mfB  таким образом, что решающие статистики 

( , )n df s  для разных значений доплеровского сдвига 
частоты находятся в памяти последовательно. 
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Рис. 6.  Распределение вычислений между рабочими элементами GPU 

 
Рис. 7. Схема модуля учета доплеровских сдвигов частоты  

и получения суммарной решающей статистики, реализованного через БПФ  

Оценка вычислительной сложности  
разработанного алгоритма 

На вычислительную сложность влияет количество 
возможных значений df  и ,s  которые определяются 

как sN  и 
dfN  соответственно. Вычислительную слож-

ность приведем в количестве комплексных умножений и 
сложений, приходящихся на один входной отсчет. Коли-
чество комплексных умножений и сложений, требуемое 
для выполнения быстрой свертки во всех одиночных 
СФ, определяется как: 

2

_
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Количество комплексных умножений, требуемое мо-
дулю учета доплеровских сдвигов частоты и получения 
суммарной решающей статистики, реализованного через 
прямое умножение на комплексные экспоненты, опреде-
ляется как: 

_ _
1 ;

d dcm direct f f pp f
pp

N MN N MN
N

    (18) 

_ _
1( 1) ( 1) .

d dcs direct f f pp f
pp

N M N N M N
N

      (19) 

А алгоритму с БПФ требуется количество комплекс-
ных умножений и сложений: 
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Необходимо отметить, что в алгоритме с БПФ, коли-
чество доплеровских сдвигов частоты 

df
N M  и явля-

ется степенью числа 2.  
Вычислительная сложность СФ с серией последова-

тельностей для алгоритма без БПФ: 
_ _ _ _ _

2

_

;2 (log (2 ) 1)
d

cm serial mf cm fast mf cm di

p

rect f

p f

N
M N

N N
MN
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



 
  (22) 

_ _ _ _ 24 log (2 ).cs serial mf cs fa ppst mfN N NM   (23) 

Вычислительная сложность СФ с серией последова-
тельностей для алгоритма с БПФ: 

_ _ _ _ _ _ _
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С учетом оценки наклона дисперсионной характери-
стики s  ионосферного канала, общая вычислительная 
сложность устройства совместного обнаружения и 
оценки параметров сигнала для двух реализаций алго-
ритма определяется как: 
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Таким образом, вычислительная сложность предло-
женного алгоритма зависит от количества разбиений 
исходной последовательности ,M  длительности одной 
части исходной последовательности ,ppN  количества 
возможных значений доплеровских сдвигов по частоте 

dfN  и наклонов дисперсионной характеристики ионо-

сферного канала .sN  

С целью определения возможности работы разрабо-
танного устройства совместного обнаружения и оценива-
ния параметров сигналов в реальном масштабе времени 
было измерено время обработки последовательностей 
прямоугольных импульсов различной длительности от 
80 мс до 5 с в полосе 400 кГц. Диапазон поиска по накло-
ну ДХ был выбран от 0 до 100 мкс/МГц ( 11)sN   с ша-
гом 10 мкс/МГц (максимальная погрешность при больших 
ОСШ 5 мкс/МГц), обеспечивая потери, не превышающие 
0,1 дБ. Диапазон поиска по частотному сдвигу был вы-
бран от -6 до 6 Гц, а погрешность варьировалась от 
1,5 Гц до 0,025 Гц ( 4 : 256)fN   в зависимости от дли-
тельности, обеспечивая потери, не превышающие 
0,25 дБ. Количество значений задержек составляло 

16384N   с погрешностью 1,25 мкс. На рис. 8 приве-
дена зависимость коэффициента реального времени от 
длительности обрабатываемого сигнала.  

 
Рис. 8.  Зависимость коэффициента реального времени  

от длительности обрабатываемого сигнала 

 
Рис. 9.  Зависимость количества операций  

с плавающей точкой, выполняемых в секунду,  
от длительности обрабатываемого сигнала 

Коэффициент реального времени определяется сле-
дующим выражением: 

,p
rt

s

T
K

Т
   (30) 

где pT  – время обработки, sТ  – длительность обрабаты-

ваемого сигнала. Сигналы, для которых значение коэф-
фициента реального времени не превышает единицы, 
могут быть обработаны в масштабе реального времени. 
Из рис. 8 видно, что в масштабе реального времени мо-
гут быть обработаны сигналы с длительностью до 2 с. 
При классическом решении задачи совместного обнару-
жения и оценивания параметров сигналов с длительно-
стью 2 с и шириной полосы частот 400 кГц в реальном 
масштабе времени необходимо s fN N N  

11 128 16384 23068672     корреляторов, которые за-
меняются разработанным устройством. Отметим, что 
производительность графических процессоров обычно 
измеряют в количестве операций с плавающей точкой в 
секунду (FLOPS). На рис. 9 приведена зависимость ко-
личества операций с плавающей точкой, выполняемых  
в секунду (FLOPS) от длительности обрабатываемого 
сигнала. При длительности 2 с разработанное устрой-
ство снижает требуемое количество операций в секунду 
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в 105 раз по сравнению с набором корреляторов. 
Устройство реализовано на графическом процессоре 
RTX 3060 с производительностью 12.7 TFLOPS, поэто-
му реализация данного устройства через набор корре-
ляторов не представляется возможным, так как для об-
работки сигналов длительностью более 0,5 с требуется 
более 100 TFLOPS.  

Заключение 

Разработаны вычислительно эффективный алго-
ритм и устройство совместного обнаружения сигналов и 
оценивания их параметров в условиях широкополосного 
ионосферного канала. Разработанный алгоритм обна-
ружения реализован на графическом процессоре. В 
результате моделирования показано, что разработан-
ные алгоритм и устройство снижают требуемое количе-
ство операций в секунду в 105 раз по сравнению с клас-
сическим устройством в виде набора корреляторов. В 
качестве дальнейшего направления исследований пла-
нируется проведение натурного эксперимента. 

Исследование выполнено за счет гранта  
Российского научного фонда № 23-29-00802, 
https://rscf.ru/project/23-29-00802. 
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