УДК 621.371

ПОДВОДНЫЙ БЕСПРОВОДНОЙ ОПТИЧЕСКИЙ КАНАЛ ПЕРЕДАЧИ ВИДЕОИЗОБРАЖЕНИЙ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ В УСЛОВИЯХ МУТНОЙ ВОДЫ

Дмитриев В.Т., к.т.н., доцент, зав. кафедрой РУС РГРТУ, e-mail: vol77@rambler.ru; Аронов Л.В., старший преподаватель кафедры РУС РГРТУ, e-mail: aronov.l.v@rsreu.ru

UNDERWATER WIRELESS OPTICAL REAL-TIME VIDEO TRANSMISSION IN TURBID WATER

Dmitriev V.T., Aronov L.V.

In the interests of controlling autonomous underwater unmanned vehicles, it is proposed to use an underwater wireless optical data transmission channel as a channel for transmitting video images from onboard cameras. The problem of transmission over the proposed channel of video images of standard definition 720x480@15 in ocean water with varying degrees of turbidity is investigated. It is shown that the use of Reed Solomon codes can increase the data transmission range by 11.8 - 22.2%, depending on the turbidity of the water. As a result of the research, the optimal, from the point of view of distance gain, value of the code rate for the Reed-Solomon code with the current configuration of the optical receiver and optical transmitter was obtained.

Key words: underwater optical wireless communication channel, optical wireless communication, free space optic, underwater communication, optical communication line.

Ключевые слова: подводный оптический каканал передачи информации, оптическая связь, беспроводной оптический канал, подводная связь, оптические линии связи.

Введение

Применение автономных необитаемых подводных аппаратов (АНПА) требует, с одной стороны, надежного канала передачи данных. для передачи команд управления, с другой – необходимо наличие высокоскоростного обратного канала, обеспечивающего передачу видеоизображений с бортовых камер на пункт управления

в реальном масштабе времени [1]. Наиболее распространенным каналом для использования в подводной среде является гидроакустический канал передачи данных. Его свойства хорошо изучены для различных акваторий, он обладает достаточной дальностью, достигающей сотен километров, помехозащищенностью, надежностью, а оборудование подводной оптической связи серийно производится. Существенным недостатком гидроакустического канала является ограничение по скорости, так, на расстоянии до 100 метров его предел составляет ~1000 кбит/с, а увеличение расстояния приводит к ещё большему снижению скорости передачи данных [2]. При этом для передачи видеоизображения стандартной чёткости с разрешением 720х480@15 (максимальное количество кадров в секунду – 15) потребует скорости не менее 4 Мбит/с.

Решить данную задачу можно с помощью подводного беспроводного оптического канала с оптическим передатчиком на основе полупроводникового лазера. Технической основой таких каналов является технология FSO (Free Space Optic), адаптированная к применению в подводной среде. Морская вода с точки зрения распространения оптического излучения является мутной

В интересах управления автономными подводными необитаемыми аппаратами предложено использовать в качестве канала передачи видеоизображений с бортовых камер подводный беспроводной оптический канал передачи данных. Исследована проблема передачи по оптическому каналу видеоизображения стандартной чёткости 720х480@15 в океанской воде с различной степенью замутненности. Показано, что применение кодов Рида – Соломона в данном канале позволяет увеличить дальность передачи данных на 11,8 – 22,2 % в зависимости от мутности воды. В результате исследований получено оптимальное с точки зрения выигрыша по расстоянию значение кодовой скорости для кода Рида – Соломона при текущей конфигурации оптического приемника и оптического передатчика.

> средой, для которой характерно ослабление сигнала за счёт рассеяния и поглощения, а кроме того, дополнительные потери энергии за счёт расхождения (рассеяния) лазерного луча, так называемы геометрические потери [3].

> Работа АНПА возможна в различных условиях, в том числе в условиях повышенной замутнённости, при этом потери на трассе распространения достигают 12 дБ/м [4], что ограничивает предельную дальность, на которую возможно передать оптический сигнал.

Целью работы являются оценка предельной дальности, на которую возможно передать видеоизображение стандартной чёткости 720х480@15 и разработка предложений по её увеличению.

Математическая модель подводного беспроводного оптического канала

Рассмотрим математическую модель подводного беспроводного оптического канала передачи данных с кодоимпульсной модуляцией по интенсивности (КИМ-ИМ). На глубинах более 200 метров, в силу недостаточности солнечного света, практически отсутствует фитопланктон. Вследствие этого параметры воды достаточно стабильны, чтобы считать канал стационарным в пределах времени его работы. В таком случае функция плотности вероятности (ФПВ) аддитивных шумов имеет вид [4]:

$$W_n(i) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{(i-\langle i_n \rangle)^2}{2\sigma_n^2}\right), \tag{1}$$

с дисперсией фототока, равной:

$$\sigma_n^2 = B\left(2q_e\left(S_{\phi}P_{IIpM} + I_D\right) + \frac{4kT}{R_L}\right),\tag{2}$$

и средним значением:

$$\left\langle i_{n}\right\rangle =\sqrt{2q_{e}B(S_{\phi}P_{\Pi pM}+I_{D})},$$
(3)

где *i* – значение фототока, А; В – ширина полосы частот канала передачи информации, Гц; $q_e = 1, 6 \cdot 10^{-19}$ Кл – элементарный заряд, I_D – темновой ток, А; S_{ϕ} – чувствительность фотоприемника, А/Вт; P_{IIpM} – мощность на входе приемника, Вт; $k = 1, 38 \cdot 10^{-23} \frac{Дж}{к\Gamma}$ – постоянная Больцмана; T – температура фотодетектора, К; R_L – сопротивление нагрузки, Ом.

ФПВ смеси сигнала и шума равна [3]:

$$W_{s+n}(i) = \frac{1}{\sqrt{2\pi(\sigma_n^2 + \sigma_s^2)}} \exp\left(-\frac{\left(i - \left(\langle i_s \rangle + \langle i_n \rangle\right)\right)^2}{2(\sigma_n^2 + \sigma_s^2)}\right), \quad (4)$$

где $\langle i_s(t) \rangle = S_{\phi} P_{\Pi p M}(t)$ – среднее значение фототока принятого сигнала, А.

Мощность принятого сигнала на выходе фотоприемника пропорциональна квадрату фототока. Подставляя формулы (1) и (4) в выражение из работы [5] для вероятности битовой ошибки (BER), получаем для подводного беспроводного оптического канала передачи данных с модуляцией КИМ-ИМ:

$$P_{e}^{B} = \frac{1}{2} \left(1 - \int_{I_{II}}^{\infty} \left(W_{s+n} \left(i \right) + W_{n} \left(i \right) \right) di \right),$$
(5)

где I_{II} – оптимальный порог обнаружения для различных протяженностей трассы распространения.

Скорость передачи данных R0 связана с электрической шириной полосы пропускания канала В и оценивается по формуле [6]:

$$R_0 \le \frac{B}{3},\tag{6}$$

при этом видеоизображение стандартной чёткости 720х480@15 (максимальное количество кадров в секунду – 15) требует ширины полосы канала передачи данных не менее 4 Мбит/с. Определим, что для передачи такого видеопотока без кодирования минимальная ширина полосы В составит не менее 12 МГц.

Предельная дальность передачи данных в водах различных типов

Рассмотрим подводный беспроводной оптический канал на базе оборудования подводной оптической связи, описанного в работе [7]. Передатчик выполнен на основе синего лазерного диода NDB4116 с мощностью излучения 100 мВт, а фотоприёмник на базе фотодиода S5973-02 с пиком чувствительности на длине волны 450 нм.

Целесообразно исследовать данный канал для различных типов океанской воды. Классификация океанских вод по Н.Г. Жерлову приведена в табл. 1 [8].

Таблица 1. Классификация океанских вод по Н.Г. Жерлову

Тип воды	Концентрация хлорофилла, <i>мг/м</i> ³
Прозрачное море	0,03
Чистый океан	0,4
Прибрежные воды	3
Мутные бухты	12

Расчет проведенный согласно выражению (5), показал, что для океанской воды типа «прозрачное море» дальность передачи данных в этом случае составит 126 метров при скорости $R_0 = 4 \text{ Мбит/c}$ (полоса канала 12 МГц) и допустимом значении вероятности битовой ошибки $P_e^B \le 10^{-8}$.

Увеличить дальность возможно за счёт использования кодов, исправляющих ошибки, в частности, кодов Рида – Соломона (РС). Они широко применяются в различных радиосистемах передачи информации, в том числе в соответствии с рекомендациям ITU-R G.709, в оптических линиях используются в качестве стандартного корректирующего кода. Коды РС (n, k, r) в общем случае имеют вид ($2^m - 1, k, n - k + 1$), где $n = 2^m - 1$ – длина блока (m – натуральное число, длина символа); k – число проверочных символов. Кодовое расстояние равно d = n - k + 1.

Вероятность ошибки символа на выходе РС-декодера равна [9]:

$$P_{S} \leq \frac{1}{n} \sum_{i=t_{d}+1}^{n} \left(\frac{i+t_{d}}{n} \right) C_{n}^{i} \left(P_{e}^{B} \right)^{t_{d}} \left(1-P_{e}^{B} \right)^{n-i},$$
(7)

где t_d – количество исправляемых ошибок.

Вероятность битовой ошибки (BER) [8]:

$$P_{ePC}^{B} \approx \frac{2^{m-1}}{2^{m} - 1} P_{S} .$$
(8)

Результаты расчета предельной дальности L_{mMAX} для потока видеоданных стандартной четкости 720х480@15 при применении кодов Рида – Соломона сведены в табл. 2.

Уменьшение кодовой скорости, с одной стороны, приводит к росту корректирующей способности кода, вследствие чего соответственно увеличивается дальность. С другой – для передачи видеопотока с фиксированной скоростью 4 Мбит/с требуется большая полоса канала В, что приводит к уменьшению отношения сигнал-шум и как следствие к росту числа ошибок. С точки зрения увеличения дальности, наилучшей эффективностью в рассмотренном случае обладает корректирующий код PC(7,1), обеспечивающий выигрыш по дальности на 22,2 %.

Проведем аналогичные расчеты для вод типа «чистый океан» и прибрежные воды» (табл. 3, 4).

Таблица 2. Предельные дальности передачи данных $L_{\!mM\!A\!X}$ при $P_{\!e}^{\scriptscriptstyle B} \leq \! 10^{-8}$

для различных кодов Рида – Соломона в океанской воде типа «прозрачное море» видеоизображения стандартной чёткости

Кодирование	Кодовая ско- рость, <i>v_k</i>	Максимальная дальность L_{mMAX} , м	Выигрыш по отношению к каналу без кодирования, %	Требуемая <i>В</i> , МГц
Без кодирования	1	126	0	12
PC(3,1)	0,33	150	19,0	36
PC(7,1)	0,143	154	22,2	84
PC(15,1)	0,067	152	20,6	180
PC(31,1)	0,032	147	16,7	372
PC(255,1)	0,004	123	-2,4	3060
PC(511,1)	0,002	114	-9,5	6132

Таблица 3. Предельные дальности передачи данных L_{mMAX} при $P_e^B \leq 10^{-8}$ для различных кодов Рида – Соломона в океанской воде типа «чистый океан» видеоизображения стандартной чёткости

Кодирование	Кодовая ско- рость, <i>v_k</i>	Максимальная дальность <i>L_{mMAX}</i> , м	Выигрыш по отношению к каналу без кодирования, %	Требуемая <i>В</i> , МГц
Без кодирования	1	40	0	12
PC(3,1)	0,33	44	10	36
PC(7,1)	0,143	45	12,5	84
PC(15,1)	0,067	45	12,5	180
PC(31,1)	0,032	44	10	372
PC(255,1)	0,004	40	0	3060
PC(511,1)	0,002	36	-10	6132

Таблица 4. Предельные дальности передачи данных $L_{_mMAX}$ при $P_e^{_B} \leq 10^{^{-8}}$ для различных кодов Рида — Соломона

в океанской воде типа «прибрежные воды» видеоизображения стандартной чёткости

Кодирование	Кодовая ско- рость, <i>v</i> _k	Максимальная дальность L_{mMAX} , м	Выигрыш по отношению к каналу без кодирования, %	Требуемая В, МГц
Без кодирования	1	8,5	0,0	12
PC(3,1)	0,33	9	5,9	36
PC(7,1)	0,143	9,5	11,8	84
PC(15,1)	0,067	9,5	11,8	180
PC(31,1)	0,032	9,5	11,8	372
PC(255,1)	0,004	9	5,9	3060
PC(511,1)	0,002	9	5,9	6132

Проведенное исследование показало, что в мутных водах типа «чистый океан» и «прибрежные воды» дальность передачи данных снижается в 3 и 15 раз соответственно, по сравнению с «прозрачным морем». Это связано с увеличением оптических потерь за счёт роста эффектов рассеяния. Причем для «чистого океана» максимальный выигрыш кодирования составит в абсолютных значениях 5 метров, а для «прибрежных вод» 1 метр. Функционирование подводного оптического беспроводного канала в «прибрежных водах» возможно на расстоянии до 9,5 метра, при заданных условиях моделирования, что недостаточно для решения большинства задач, кроме того, сопровождается риском потери управления АНПА. В следствии этого применение подводного беспроводного оптического канала передачи видеоданных требует высоконадежного дублирующего и обратного канала для поддержания непрерывности управления, например гидроакустического.

Заключение

В результате проведенных исследований на примере этих трёх типов вод, сравнивая различные коды Рида – Соломона, мы показали, что наибольшая дальность для фиксированной скорости передачи 4 Мбит/с обеспечиваем при использовании кода PC(7,1), при этом данное кодирование обеспечивает выигрыш по расстоянию 12,5 % в «чистом океане» и 11,8 % в «прибрежных водах», однако в абсолютных цифрах это составит 5 метров и 1 метр соответственно. Отсюда можно сделать вывод о том, что функционирование подводного беспроводного оптического канала в водах с повышенной замутненностью потребует дополнительных технических решений как в области обработки сигналов: применение каскадного кодирования, турбокодов, адаптивных помехоустойчивых кодеков [10, 11] и т.д., так и в аппаратной части: увеличение мощности, модификация оптической приемной системы.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (FSSN-2020-0003).

Литература

1. Kirillov S. Improved Quality Video Transmission by Optical Channel from Underwater Mobile Robots / S. Kirillov, V. Dmitriev, L. Aronov, P. Skonnikov, A. Baukov // Studies in Systems, Decision and Control, vol. 199, Springer, 2019, pp. 227-239. 2. Kaushal H. Underwater optical wireless communication / H. Kaushal, G. Kaddoum // IEEE Access, vol. 4, 2016, pp. 1518-1547.

3. Bloom S. Understanding the performance of freespace optics / S. Bloom, E. Korevaar, J. Schuster, H. Willebrand // Journal of optical networking, vol. 2, no. 6, 2003, pp. 178-200.

4. Кириллов С.Н. Пропускная способность подводного оптического канала передачи информации с кодоимпульсной модуляцией по интенсивности / С.Н. Кириллов, Л.В. Аронов // Вестник РГРТУ. 2020. № 4 (74). С. 3-13. DOI: 10.21667/1995-4565-2020-74-3-13к.

5. Пратт В.К. Лазерные системы связи / пер. с англ. под ред. А.Г. Шереметьева. М.: Радио и связь, 1993. 232 с.

6. Баскаков С.И. Радиотехнические цепи и сигналы. 3-е изд. // С.И. Баскаков. М.: Высшая школа, 2000. 462 с.

7. Кузнецов С. Система оптической связи в подводной среде / С. Кузнецов, Б. Огнев, С. Поляков // Первая миля. 2014. № 2. С. 46-51. 8. Abd El–Naser A. Mohamed Underwater wireless optical communications for short range typical ocean water types / Abd El-Naser A. Mohamed, Hamdy A. Sharshar, Ahmed Nabih Zaki Rashed, Enab Salah El-dien // Canadian journal on electrical and electronics engineering. 2012, no. 7, vol. 3, pp. 344-361.

9. Золотарев В.В. Помехоустойчивое кодирование. Методы и алгоритмы: справочник / под ред. чл.-кор. РАН Ю.Б. Зубарева / В.В. Золотарев, Г.В. Овечкин. М.: Горячая линия-Телеком, 2004. 126 с.

10. Кириллов С.Н. Алгоритм объективной оценки качества декодированного речевого сигнала на основе изменения спектральной динамики критических полос спектра / С.Н. Кириллов, В.Т. Дмитриев, Я.О. Картавенко // Вестник РГРТУ, 2011. №3(37). С.3-7.

11. Кириллов С.Н. Комплексный алгоритм объективной оценки качества декодированного речевого сигнала при действии акустических помех / С.Н. Кириллов, В.Т. Дмитриев // Труды СПИИРАН 2018 №1. С. 34-55.

НОВЫЕ КНИГИ

Основы статистической теории радиотехнических систем:

Учебное пособие под ред. А.В. Коренного – М.: Изд-во Радиотехника, 2021 г. – 240 с.: ил.

Приведены необходимые сведения из теории вероятностей, случайных процессов и математической статистики, и на их основе рассмотрены статистические методы анализа линейных и нелинейных систем. На базе теории фильтрации изложены современные методы синтеза радиоэлектронных систем различного назначения, основы теории информации и методы статистического моделирования. Методика применения теоретических результатов к решению практических задач проиллюстрирована содержательными примерами.

Предназначено для слушателей и курсантов военных вузов, а также студентов вузов, обучающихся по специальности «Радиоэлектронные системы и комплексы». Может быть аспирантам и преподавателям вузов, занимающихся вопросами синтеза и анализа радиотехнических устройств и систем.

Гаврилов К.Ю., Каменский И.В., Кирдяшкин В.В., Линников О.Н.

Моделирование и обработка радиолокационных сигналов в МАТLАВ: Учебное пособие – М.: Изд-во Радиотехника, 2020 г. –264 с.: ил.

Рассмотрены методы моделирования радиолокационных сигналов при отражении от сложных целей, принципы моделирования аналоговых и цифровых устройств обработки сигналов, включающие формирование двумерной матрицы цифровых отсчетов, методы согласованной фильтрации, обнаружения и обработки сигналов в импульсно-доплеровских радиолокационных системах.

Показаны примеры обработки наиболее распространенных видов радиолокационных сигналов – импульсных, с линейной частотной модуляцией и фазо-кодоманипулированных сигналов. Приведены программы моделирования и обработки сигналов в среде МАТLAB.

Для студентов, аспирантов и инженеров, изучающих и использующих теорию радиолокации и методы моделирования и обработки радиолокационных сигналов. Будет полезна научным работникам и разработчикам радиолокационных систем.

основы

ТЕОРИИ

СТАТИСТИЧЕСКОЙ

