УЛК 621.396

ИНТЕГРАЦИЯ НАЗЕМНЫХ КОМПЛЕКСОВ ПРИЕМА, ОБРАБОТКИ И РАСПРОСТРАНЕНИЯ ИНФОРМАЦИИ ОТ КОСМИЧЕСКИХ СИСТЕМ «ЭЛЕКТРО» И «АРКТИКА-М» С ЕДИНОЙ ТЕРРИТОРИАЛЬНО РАСПРЕДЕЛЕННОЙ СИСТЕМОЙ ДЗЗ

Пастарнак В.И., к.т.н., старший научный сотрудник, главный конструктор АО «НПО Лавочкина», e-mail: npol@laspace.ru;

Козинин Е.А., заместитель начальника отдела АО «НПО Лавочкина», e-mail: kozinin@laspace.ru; Кубышкин А.П., ведущий инженер-конструктор АО «НПО Лавочкина», e-mail: npol@laspace.ru; Череватюк И.В., инженер-электроник АО «НПО Лавочкина»», e-mail: kozinin@laspace.ru; Ефимов Е.А., инженер-электроник АО «НПО Лавочкина»», e-mail: npol@laspace.ru.

INTEGRATION OF GROUND COMPLEX FOR RECEPTION, PROCESSING AND DISSEMINATION OF INFORMATION FROM SPACE SYSTEMS «ELECTRO» AND «ARCTICA-M» WITH UNIFIED TERRITORIALY DISTRIBUTED SYSTEM OF EARTH REMOTE SENSING

Pastarnak V.I., Kozinin E.A., Kubishkin A.P., Cherevatyuk I.V., Efimov E.A.

Components and purpose of ground segments of space systems «Electro» and «Arctica-M» and their future integration with Unified territorialy distributed system of Earth remote sensing which being created by State space corporation «Roscosmos» are presented in the article.

Key words: Earth remote sensing; ground complex of acquisition, processing and distribution of information; Unified territorially distributed system; geostationary hydrometeorological space system; highly elliptical orbital space system.

Ключевые слова: дистанционное зондирование Земли, наземный комплекс приема, обработки и распространения информации, единая территориально распределённая информационная система, геостационарная гидрометеорологическая космическая система, высокоэллиптическая космическая система.

средств обработки данных от космических систем «Электро-Л» и «Арктика-М». Рассмотрены вопросы интеграции этих наземных средств с Единой территориальной распределенной информационной системой дистанционного зондирования Земли, создаваемой Госкорпорацией «Роскосмос».

Представлены принципы построения и задачи наземных

Введение

В рамках Федеральной космической программы России планируется развитие геостационарной гидрометеорологической космической системы (ГГКС) «Электро-Л». Созданный ранее наземный комплекс приема, обработки и распространения информации от космического аппарата (КА) «Электро-Л» № 1 (НКПОР-Э) требует дальнейшего развития для последующих аппаратов этого типа и прежде всего в части взаимодействия с создаваемой в России Единой территориально-распределенной информационной системы дистанционного зондирования Земли (ЕТРИС ДЗЗ).

Научно-технический задел по теме «Электро» может быть эффективно использован для создания нового класса систем глобального наблюдения Земли типа «Арктика-М», который нацелен на детальное изучение стратегически важных для России приполярных областей, что не возможно выполнить с помощью системы «Электро-Л».

В настоящей работе акцент сделан на особенности построения наземных средств обработки информации с ориентацией на космические системы серии «Электро-Л»

(функционирующих на геостационарных орбитах) и систем «Арктика-М» (работающих на высокоэллиптических орбитах). Большое внимание уделено вопросу использования полученной и обработанной информации в интересах конкретных потребителей путем интеграции в систему ЕТРИС ДЗЗ.

Космическая система «Электро-Л»

Геостационарная гидрометеорологическая космическая система «Электро-Л» предназначена для информационного обеспечения задач оперативной метеорологии, гидрологии, агрометеорологии, мониторинга климата и окружающей среды.

Задачей КА «Электро-Л» является получение многозональных цифровых изображений земного диска на фоне космоса, на основе которых формируются спутниковые гидрометеорологические продукты: глобальные карты облачности и подстилающей поверхности, температурные карты морской поверхности, карты перемещения облачных образований и т.п.

КА «Электро-Л» также решают задачи получения гелиогеофизических данных на высоте орбиты с последующей передачей их в НКПОР-Э, ретрансляции метео-

данных с платформ сбора данных и других видов целевой информации.

Возможности бортовой целевой аппаратуры позволяют обеспечить:

- квазинепрерывное наблюдение всего земного диска (частота получения глобальной информации – 0,5 часа);
- получение снимков фрагментов облачного покрова и земной поверхности за счёт сканирования земного диска с временным интервалом 15 минут;
- непрерывное получение гелиогеофизической информации на высоте орбиты;
- ретрансляцию метеорологических данных с платформ сбора данных;
- ретрансляцию обработанной метеорологической информации и массивов цифровой информации;
- ретрансляцию сигналов от аварийных буев системы КОСПАС-САРСАТ.

Передача информации с КА «Электро-Л» на пункты приема производится:

- круглосуточно, с интервалом 0,5 часа (15 минут в учащенном режиме) в части информации, сформированной бортовой системой сбора данных (БССД) от многозонального сканирующего устройства (МСУ-ГС), гелиогеофизического аппаратурного комплекса (ГГАК-Э) и бортового комплекса управления;
- непрерывно, в части гелиогеофизической информации от ГГАК-Э;
- круглосуточно, в соответствии с циклограммой ретрансляции различных видов целевой информации.

Покрытие земной поверхности зонами обзора КА «Электро-Л» представлено на рис. 1.

НКПОР-Э осуществляет прием, обработку, накопление и распространение всех видов целевой информации, передаваемой и ретранслируемой с КА «Электро-Л», планирования и контроля работы целевой аппаратуры и средств приема и обработки данных наземного комплекса, выдачи необходимых данных для управления КА в наземный комплекс управления (НКУ-Э).

НКПОР-Э создан с учетом совместимости по информационным продуктам с космическими аппаратами международной метеорологической спутниковой систе-

мы и представляет собой административную территориально-распределенную систему, составные части которой расположены в различных регионах Российской Федерации.

Область применения информационных продуктов:

- анализ и прогноз погоды в региональном и глобальном масштабах;
- анализ и прогноз состояния акваторий морей и океанов;
 - анализ и прогноз условий для полетов авиации;
- анализ и прогноз гелиогеофизической обстановки в околоземном космическом пространстве, состояние ионосферы и магнитного поля Земли;
 - мониторинг климата и глобальных изменений;
 - контроль чрезвычайных ситуаций;
 - экологический контроль окружающей среды и др.

Схема территориального размещения составных частей НКПОР-Э представлена на рис. 2.

НКПОР-Э решает следующие целевые задачи:

- планирование, составление и коррекцию (при необходимости) программ работы бортовой целевой аппаратуры с учетом имеющегося ресурса, условий функционирования составных частей космического комплекса, состояния средств НКПОР-Э и заявок потребителей с последующей выдачей их в НКУ-Э в установленные сроки:
- прием на частоте 7500 МГц со скоростью 30,72 Мбит/с многоспектральных снимков облачности и подстилающей земной поверхности в пределах всего наблюдаемого диска Земли, получаемых с МСУ-ГС, а также гелиогеофизической информации и оперативноконтрольной информации;
- прием на частоте 1693 МГц со скоростью 5 Кбит/с гелиогеофизических данных, полученных на высоте орбиты, их обработку и выдачу подразделениям Федеральной службы России по гидрометеорологии и мониторингу окружающей среды;
- передачу метеорологической информации с платформ сбора данных непосредственно на КА «Электро-Л», в режиме многостанционного доступа с частотновременным разделением каналов, с периодичностью, привязанной к синоптическим срокам и информации о

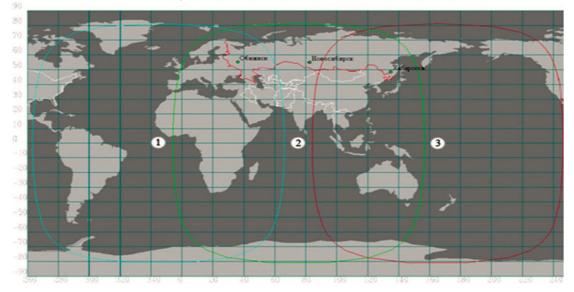


Рис. 1. Покрытие земной поверхности зонами обзора КА «Электро-Л»

штормовых предупреждениях в диапазоне частот от 401 до 403 МГц со скоростями передачи 100 или 1200 бит/с и объемом передаваемых данных: для международных каналов 5192 бит в каждом сообщении; для национальных каналов до 15000 бит в каждом сообщении;

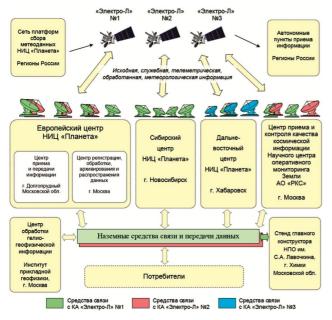


Рис. 2. Схема территориального размещения составных частей НКПОР-Э

- прием метеорологической информации, ретранслированной через КА «Электро-Л», одновременно с 300 платформ сбора данных в режиме частотно-временного разделения каналов в диапазоне (1697 \pm 1) МГц со скоростями приема 100 или 1200 бит/с и объемом принимаемых данных от 5192 бит до 15000 бит в каждом сообщении;
- выполнение телекоммуникационных функций по распространению, обмену обработанными гидрометеорологическими и гелиогеофизическими данными;
- прием сигналов от аварийных радиобуев системы КОСПАС-САРСАТ, ретранслированных бортовым радиотехническим комплексом (БРТК) КА «Электро-Л» на частоте 1544,5 МГц со скоростью передачи 400 бит/с, и передачу информации в наземную службу системы КОСПАС-САРСАТ;

- анализ и оценку качества информации, принимаемой в сеансе связи;
- формирование и выдачу данных для обмена информацией с НКУ-Э и составными частями НКПОР-Э;
- управление и координацию работы составных частей НКПОР-Э.

Космическая система «Арктика-М»

Высокоэллиптическая гидрометеорологическая космическая система (ВГКС) «Арктика-М» с орбитальной группировкой в составе двух аппаратов предназначена для информационного обеспечения решения задач оперативной метеорологии, гидрологии, агрометеорологии, мониторинга климата и окружающей среды.

ВГКС «Арктика-М» имеет принципиальные отличия от ГГКС «Электро-Л»:

- движение КА во время съемки осуществляется по высокоэллиптической орбите;
- в ВГКС на рабочих участках попеременно будут функционировать 2 КА;
- обеспечивается непрерывная круглосуточная съемка арктического региона Земли выше 60° с.ш., недоступного для наблюдения с геостационарной орбиты, при зенитных углах съемки не более 70°;
- материалы съемки для тематической обработки в первую очередь требуются российским потребителям.

Космические аппараты «Арктика-М» № 1, 2, входящие в состав орбитальной группировки ВГКС «Арктика-М», обеспечивают выполнение следующих основных целевых задач:

- многоспектральная съемка облачности и подстилающей земной поверхности в пределах всего наблюдаемого диска Земли с периодичностью 30 минут (штатный режим) и 10-15 минут (учащенный режим);
- передача на пункты приёма информации данных многоспектральной съемки, оперативно-контрольной и гелиогеофизической информации;
- сбор и передача на пункты приёма информации гелиогеофизических данных;
 - сбор и передача данных с платформ сбора данных;
- ретрансляция сигналов аварийных буев системы КОСПАС-САРСАТ.

Покрытие земной поверхности зонами обзора КА «Арктика-М» представлено на рис. 3.

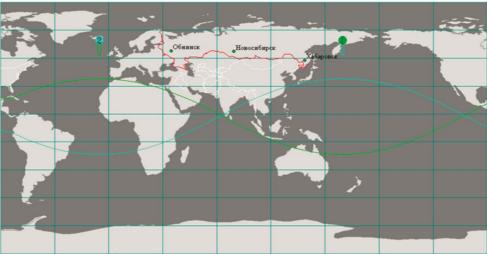


Рис. 3. Покрытие земной поверхности зонами обзора КА «Арктика-М»

Прием, обработку данных и комплексное планирование информационного ресурса ВГКС осуществляет НКПОР-АМ, представляющей собой административную территориально-распределенную систему, составные части которой расположены в различных регионах Российской Федерации.

Укрупненный состав ВГКС «Арктика-М» представлен на рис. 4.

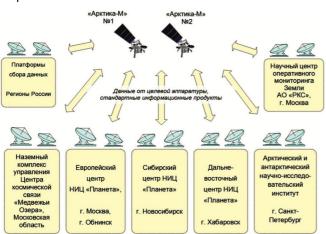


Рис. 4. Состав ВГКС «Арктика-М»

НКПОР-АМ, входящий в состав ВГКС «Арктика-М», обеспечивает выполнение следующих основных задач:

- прием и передачу радиосигналов по космическим каналам связи с КА «Арктика-М» во всех рабочих диапазонах:
- демодуляцию, декодирование, распаковку, первичную и тематическую обработку принимаемой информации:
- планирование и составление программ работы целевой аппаратуры с учетом имеющегося ресурса, функционирования космической системы и заявок потребителей с последующей выдачей программ в наземный комплекс управления в установленные сроки;
- сопряжение центров приема и обработки данных НКПОР-АМ с наземными каналами обмена данными для передачи информации основным потребителям с целью ее вторичной обработки;
- оперативный контроль и анализ функционирования бортовой целевой аппаратуры;
- поддержку функций поиска и спасения системы КОСПАС-САРСАТ.
- С учетом особенностей функционирования ВГКС «Арктика-М», при создании наземных средств приема информации необходимо реализовать следующие доработки:
- применение антенных постов, обеспечивающих перенацеливание электрической оси антенны в широком диапазоне углов;
- учет доплеровского сдвига частот вследствие наличия радиальной скорости движения КА;
- нестандартный X диапазон частот по линии вниз (7865 МГц вместо 7500 МГц).

При проектировании наземных комплексов обработки информации ВГКС «Арктика-М» требуется создание новых технологий, алгоритмов, методик и программного обеспечения решения целевых задач. Главными проблемами являются организация межпрограммного взаимодействия и формирование изображений уровня обработки 1.5 (геометрическая и радиометрическая нормализация, геодезическая привязка).

Съемка с высокоэллиптической орбиты арктической территории со слабо выраженными береговыми линиями существенно усложняет процесс нормализации и геодезической привязки целевой информации МСУ-ГС. С целью обеспечения надежности доставки снимков МСУ-ГС до потребителей НКПОР-АМ будет иметь сложную распределенную структуру, подразумевающую двойное горячее и холодное резервирование вычислительных комплексов. В этих условиях для выполнения требований циклограммы по времени передачи и обработки целевой информации целесообразно минимизировать количество комплексов программно-технических средств в составе НКПОР-АМ.

Интеграция НКПОР-Э и НКПОР-АМ с ЕТРИС ДЗЗ

Для интеграции НКПОР-Э и НКПОР-АМ с ЕТРИС ДЗЗ необходимо в первую очередь:

- внести дополнения в тактико-технические задания по темам «Электро-Л», «Арктика-М»;
- разработать и утвердить положение по взаимодействию НКПОР-Э, НКПОР-АМ с ЕТРИС ДЗЗ, включающее распределение квот бортовых ресурсов по ретрансляции информации между ведомствами;
- образовать оперативно-техническое руководство из представителей головных предприятий по созданию космических комплексов, эксплуатирующих организаций, разработчиков ЕТРИС ДЗЗ, заинтересованных ведомств (по образцу главной оперативной группы управления).

В целях минимизации временных и финансовых издержек на организацию и создание ЕТРИС ДЗЗ целесообразно максимально использовать уже имеющиеся центры НКПОР министерств, ведомств и организаций, учитывая:

- имеющуюся инфраструктуру (территория, здания и сооружения, коммуникации, средства связи и др.);
- разрешительные документы на осуществление космической связи;
 - подготовленный квалифицированный персонал;
- налаженное взаимодействие с обеспечивающими организациями (службы контроля радиоэфира, учебные заведения, провайдеры, коммунальные службы, транспортные кампании и др.).

Наиболее предпочтительным вариантом организации взаимодействия является реализация на базе существующего СПО НКПОР-Э и НКПОР-АМ функции обмена информацией с ЕТРИС ДЗЗ по протоколам информационно-логического взаимодействия при минимально необходимой доработке используемых форм обмена и СПО.

Подобный принцип работы заложен при обмене информацией между НКПОР-Э (НКПОР-АМ) и НКУ, а также с потребителями тематических продуктов. Специальное программное обеспечение, реализующее данный способ обмена информацией, функционирует с 2010 года и зарекомендовало себя с положительной стороны.

Взаимодействие ЕТРИС ДЗЗ с НКПОР-Э (НКПОР-

АМ) предлагается организовать следующим образом:

- в ЕТРИС ДЗЗ оператор или программное обеспечение формирует заявку на получение и выдачу информации по проведенным съемкам с КА ГГКС «Электро-Л» и ВГКС «Арктика-М»;
- заявка из ЕТРИС ДЗЗ поступает в НКПОР-Э (НКПОР-АМ) и принимается к реализации;
- НКПОР-Э (НКПОР-АМ) после приема и предварительной обработки информации формирует файлы и выдает запрашиваемые данные в ЕТРИС ДЗЗ;
- ЕТРИС ДЗЗ производит хранение, дальнейшую обработку и предоставление полученной информации заинтересованным пользователям.

Учитывая опыт эксплуатации СЧ НКПОР-Э при работе с КА «Электро-Л» № 1, 2, целесообразно в случаях, когда прием информации на основные приемные средства НКПОР-Э и НКПОР-АМ не представляется возможным, использовать для этого резервные приемные средства НКПОР-Э и НКПОР-АМ или приемные средства ЕТРИС ДЗЗ (ЦПО и КККИ Госкорпорации «Роскосмос» и им подобные), а затем передавать принятую информацию в ФГБУ «НИЦ «Планета» по наземным каналам связи (рис. 5).

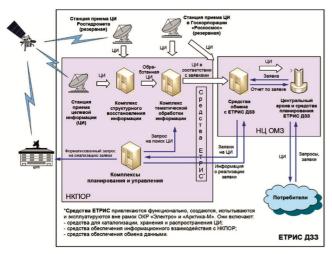


Рис. 5. Схема информационного взаимодействия центра НКПОР с ЕТРИС ДЗЗ

Для обеспечения возможности более частого использования телекоммуникационных каналов БРТК в перерывах между съемками МСУ-ГС целесообразно провести работы по усовершенствованию или замене конструкции системы управления остронаправленных антенн (в настоящее время существует ограничение на перенацеливание не более 2 раз в сутки).

В целях увеличения пропускной способности каналов БРТК целесообразно провести работы по увеличению скорости передачи данных (в т.ч. с использованием более сложных способов модуляции сигналов, а также кодирования передачи данных). Это позволит передавать в НКПОР-Э данные, полученные от МСУ-ГС, без буферизации в БССД, в т.ч. массивы данных, полученные от 4-х проходов сканирования в ИК-каналах.

Также для динамического конфигурирования информационной системы по обработке информации

предлагается перейти от модульного построения программного обеспечения к конфигурированию через отдельно работающие библиотеки.

Ещё одним ключевым шагом по сокращению времени обработки и доставки информации потребителю, повышению автоматизации и сокращению затрат на создание и эксплуатационных расходов может быть реализация конфигурации программно-технических средств наземных сегментов космических систем дистанционного зондирования Земли, включающей в себя интеграцию работы СПО на базе единых технических средств и общего программного обеспечения, использование виртуализации и кластеризации, сращивание с приемнопередающими станциями. Частично такая конфигурация была реализована в проекте «Электро-Л», без интеграции с приемно-передающими станциями она реализуется в проекте «Арктика-М» и в окончательном виде предполагается к реализации в проекте «Электро-М» на АО «НПО Лавочкина» совместно со смежными организациями. Это позволит в буквальном смысле устанавливать на каждом объекте эксплуатации одну вычислительную стойку, пару-тройку рабочих мест операторов, необходимое количество модульных приемных и передающих антенных комплексов, тиражировать их на любое количество объектов эксплуатации путем конфигурации необходимых модульных компонентов, при этом решая все задачи НКПОР по взаимодействию со средствами ЕТРИС.

В дальнейшем предполагается переход на свободно распространяемое общее программное обеспечение на базе операционных систем Linux.

Заключение

По рассмотренным исследованиям можно сделать следующие выводы.

- 1. Системы геостационарного типа («Электро-Л») и системы высокоэллиптического наблюдения Земли («Арктика-М») имеют общие и отличительные принципы построения наземных средств обработки информации от них, которые реализуются в НКПОР-Э и НКПОР-АМ.
- 2. Рассмотрена важная задача интеграция НКПОР-Э и НКПОР-АМ с ЕТРИС ДЗЗ, которая позволит всем заинтересованным организациям получить оперативный доступ к целевой информации с КА «Электро-Л» и «Арктика-М» для решения собственных задач.

Литература

- 1. Норенков И.Т. Телекоммуникационные технологии и сети. М.: Изд. МГТУ им. Баумана, 2000. 248 с.
- 2. Олифер Н.А., Олифер В.Г. Компьютерные сети. Принципы, технологии, протоколы: Учебник для ВУЗов. 2-е изд. СПб.: Питер, 2004. 864 с.
- 3. Клейнрок Л. Теория массового обслуживания: Пер. с англ. // Под ред. В.И. Нейман. М.: Машиностроение, 1979. 432 с
- 4. Кучерявый Е.А. Управление трафиком и качество обслуживания в сети Интернет // СПб, Наука и Техника. 2004.