#### УДК 621.391

## ИССЛЕДОВАНИЕ ВЛИЯНИЯ СПЕКТРА СВЯЗАННОСТИ ЦИКЛОВ В ГРАФЕ ТАННЕРА НА ЭНЕРГЕТИЧЕСКИЙ ВЫИГРЫШ КОДИРОВАНИЯ ИЗВЕСТНЫХ LDPC КОДОВ

**Овинников** А.А., н.с. кафедры телекоммуникаций и основ радиотехники Рязанского государственного радиотехнического университета, e-mail: ovinnikov.a.a@tor.rsreu.ru.

### ACE SPECTRUM INFLUENCE ON CHANNEL CODING GAIN OF KNOWN LDPC CODES

#### **Ovinnikov** A.A.

The construction of finite-length irregular LDPC codes with low error floors is currently an attractive research problem. In particular, for the binary erasure channel (BEC), the problem is to find the elements of selected irregular LDPC code ensembles with the size of their minimum stopping set being maximized. Due to the lack of analytical solutions to this problem, a simple but powerful heuristic design algorithm, the approximate cycle extrinsic message degree (ACE) constrained design algorithm, has recently been proposed. Building upon the ACE metric associated with a cycle in a code graph, we use the ACE spectrum of LDPC codes as a useful tool for evaluation of codes from selected irregular LDPC code ensembles. We justify the ACE spectrum approach through examples and simulation results.

Key words: LDPC, approximate cycle extrinsic, heuristic design algorithm, girth.

Ключевые слова: помехоустойчивое кодирование, итеративное декодирование, низкоплотностные коды, граф Таннера, обхват графа, связанность циклов графа, энергетический выигрыш от кодирования (ЭВК).

#### Введение

В связи с постоянным увеличением скорости передаваемой информации и, как следствие,

ростом ёмкостей для её хранения повышаются требования к информационной достоверности. Увеличение этого показателя возможно при внедрении эффективных алгоритмов помехоустойчивого кодирования и декодирования, среди которых следует особенно отметить наиболее перспективные с точки зрения практической реализации турбо и LDPC коды. Широкое распространение в стандартах беспроводной связи [1] и передачи данных получил подкласс низкоплотностных кодов двоичные квазициклические коды с малой плотность проверок на чётность (QC-LDPC). Их основное преимущество заключается в возможности компактного хранения проверочных матриц, возможности реализации быстрых алгоритмов кодирования и параллельного вероятностного декодирования. Однако, как и для любых других итеративно-декодируемых кодов, открытым остаётся вопрос повышения энергетического выигрыша от кодирования в области малых шумов. Один из способов решения этой проблемы лежит в плоскости исследования свойств циклов и их взаимосвязей в графах Таннера низкоплотностных кодов. Этому вопросу и посвящена настоящая работа.

### Теоретические аспекты

Информация, передаваемая от одних узлов графа Таннера к другим в процессе вероятностного декодирования, неизбежно попадает в замкнутые структуры с

Рассматривается исследовательская задача оценки ряда параметров, присущих графам Таннера нерегулярных кодов с низкой плотностью проверок на чётность, для определения степени их влияния на энергетический выигрыш от кодирования. Эффективность кодов оценивается с помощью имитационного моделирования по методу Монте Карло в канале с белым шумом и итеративным вероятностным декодером, работающим по алгоритму «распространение доверия».

> наиболее простой конфигурацией в виде циклов. Известные по ряду работ [2-5] более сложные образования множества «остановок» и «ловушек» фактически состоят из конечного числа связанных друг другом циклов различной длины. Для каналов со стираниями энергетический выигрыш от кодирования полностью определяется размером наименьшего множества «остановок» [4]. Для других каналов связи такая зависимость не столь очевидна и до настоящего времени однозначно не построена полная антология всех подграфов в структуре графа Таннера, которые негативно влияют на эффективность итеративных декодеров. С другой стороны интуитивно понятно, что уменьшение количества объектов, относящихся к множествам «ловушек» и «остановок», должно приводить к увеличению достоверности информации при переходе от одной итерации декодирования к другой. Однако, конфигурация рассматриваемых структур в графе Таннера, влияющих на ЭВК может значительно отличаться для двух разных кодов. В силу этого большой интерес представляет поиск и верификация критерия оценки меры внутренней связи циклов в графе Таннера без необходимости определения всех имеющихся конфигураций множеств «ловушек» и «остановок» с оценкой степени их влияния.

> Рассмотрим несколько различных множеств символьных вершин в графе Таннера, содержащих в своём составе циклы. Пусть  $C_d$  – множество, состоящее из d

символьных вершин, таких, что оно содержит в своём составе минимум один цикл. Максимальная длина цикла в  $C_d$  при этом ограничена и равна 2d. Если в дополнении к вышесказанному добавить условие, что каждая из вершин в составе  $C_d$  связана с остальными как минимум дважды, то из  $C_d$  получается множество «остановки»  $S_d$ . Пусть цикл длиной  $g \leq 2d$  содержит в своём составе вершины из  $C_d$ , тогда связанность g с остальными вершинами определяется как:

$$\eta = \sum_{i} (d_i - 2), \quad i = 1, 2, \dots g/2, \tag{1}$$

где  $d_i$  – вес *i*-й вершины графа Таннера. Метрика связанности  $\eta$  цикла с графом показывает общее количество ветвей, по которым может транслироваться информация, не подверженная влиянию цикла. Для регулярных LDPC кодов параметр  $\eta$  является постоянным для групп циклов одной длины и равен:

$$\eta_r = \frac{g}{2} \left( d_s - 2 \right). \tag{2}$$

Таким образом, оценка влияния метрики связанности на эффективность декодирования регулярных кодов затруднительна, т.к. она является постоянной величиной для заданного графа Таннера. В тоже время использование параметра *п* может оказаться продуктивным при определении энергетической характеристики нерегулярных кодов. Проанализируем причины появления эффекта насыщения вероятности ошибки декодирования для заданного графа Таннера. Для этого воспользуемся распределением минимального значения метрик связанности – спектром  $S(\eta)$ , для циклов длиной от обхвата  $g_{min}=g_0$  до некоторого максимального значения g<sub>max</sub>. Таким образом, исследование ЭВК при вероятностном декодировании будет заключаться в оценке спектра метрик связанности и определении его корреляции с наличием эффекта насыщения, появление которого фиксируется по результатам моделирования в канале с АБГШ по методу Монте Карло. Для нахождения значения η требуется идентифицировать все циклы, имеющиеся в проверочной матрице вплоть до определённой длины. Поэтому первоначально требуется выбрать наиболее подходящий алгоритм поиска и нумерации замкнутых структур в двудольных разреженных графах.

#### Алгоритм идентификации коротких циклов в двудольных графах

Известно, что реализация алгоритмов подсчёта циклов в произвольных графах представляет значительную сложность [6]. Однако, разреженность структуры проверочной матрицы позволяет снизить вычислительные затраты традиционных алгоритмов [7] подсчёта циклов. В силу того, что наибольшее влияние на ЭВК оказывают короткие циклы, то целесообразно использовать алгоритмы, способные за ограниченное время оценивать длину циклов с длиной вплоть до  $2g_0$ . В литературе представлен ряд алгоритмов, способных оценивать длину цикла [8], однако большинство из них либо имеют ограничение на максимальную длину цикла ( $g_{max}$ ) с привязкой к размеру обхвата, причём  $g_{max} < 2g_0$  либо требу-

ют значительных затрат памяти, которые как минимум линейно растут с длиной кода. С учётом рассмотренных выше ограничений для оценки метрик связанности используется алгоритм «цепей» для идентификации всех циклов в графе Таннера вплоть до  $2g_0$  включительно.

Суть алгоритма цепей заключается в последовательном построении дерева цепей из каждой символьной вершины V на глубину k, наиболее актуально для  $k \leq 2g_0$ , с последующим поиском всех циклов, проходящих через анализируемую вершину. Путём поиска в ширину из заданной вершины И строится дерево цепей высоты k/2 - 1, так что вершины дерева, образующие уровень l (нумерация - с нуля), соответствуют всевозможным цепям длиной *l* с началом *V* в исходном графе. Далее находятся все пары листьев построенного дерева, для каждой из которых соответствующие цепи образуют цикл при соединении их концов с какой-либо общей смежной вершиной *V*. Необходимо проверить, чтобы обе цепи не «пересекались», а также не проходили через вершину V. В [8] предписывается перебирать только пары листьев из разных поддеревьев с корнями, составляющими первый уровень дерева. В противном случае цепи заведомо «пересекаются».

Дерево цепей высоты *k*/2-1 позволяет найти не только циклы длиной *k*, но и более короткие циклы. Для поиска циклов длиной *l* < *k* можно воспользоваться уровнем *l*=2 (вместо *l*/2 -1) и рассматривать пары вершин этого уровня, соответствующих цепям с общим концом. С целью унификации процедуры поиска циклов различной длины дерево цепей удобно строить до высоты *k*/2.

Подсчёт всех циклов длиной не более *k* осуществляется путём запуска указанной процедуры для каждой вершины одной доли графа. Здесь также применим общий оптимизационный приём: не рассматривать вершину после того как найдены все циклы, проходящие через неё.

Таким образом, используя алгоритм «цепей» для идентификации циклов длиной вплоть до  $2g_{\theta}$ , можно подготовить исходные данные для алгоритма определения спектра  $S(\eta)$  циклов в графе Таннера.

# Исследования влияния спектра связанности циклов на ЭВК известных LDPC кодов

Исследование эффективности метрик связанности циклов для быстрой оценки наличия порога проводилось на псевдослучайных кодах [9, 10] и трёх ансамблях из стандартов [11, 12]. Параметры исследуемых кодов представлены табл. 1 во второй колонке. Аббревиатуры кодов, полученных на базе известных алгоритмов синтеза, имеют следующую расшифровку - Mak [9] (псевдослучайные коды Маккая) и РЕС [10] (алгоритм последовательно расширения графа с максимизацией минимального локального цикла). К кодам из стандартов относятся: RAVIS – нерегулярные LDPC коды наименьшей длины из спецификации [12], Wi1 - коды, используемые на физическом уровне стандарта беспроводного широкополосного доступа WiMAX [11] и, наконец, Wi2 - помехоустойчивые коды из спецификации для беспроводных локальных вычислительных сетей 802.11n/ac [11].

В качестве алгоритма обнаружения и исправления ошибок использовался итеративный вероятностный декодер IBP с мягким входом и выходом [1] и максимальным количество итераций равным 20. Сигнал на выходе кодера модулировался низкочастотной двоичной фазовой модуляцией и поступал в канал с двоичным входом и непрерывным выходом с АБГШ. При расчёте вероятностей ошибки на бит для получения достоверных оценок накапливалось не менее 1000 ошибок для построения каждой точки. Графические зависимости вероятность битовой ошибки от отношения сигнал шум представлены на рис. 1-5. Для определения эффективности ис-

пользования спектра метрик для каждого в отдельности взятого кода с помощью алгоритма «цепей» были идентифицированы циклы с длинами от  $g_0$  до  $g_0+6$  и составлена соответствующая табл. 2. На основании этих данных был выполнен расчёт метрик связанности по каждой пронумерованной замкнутой структуре графа. В работе определено количество циклов (n(.)) с длинами вплоть до  $2g_0+2$ . Также были определены минимальные значения метрик связанности  $S(\eta_i)$  для всех идентифицированных циклов.

Таблица 1. Параметры исследуемых LDPC кодов

| Ν    | Сокращение | R   | $g_0$ | $\lambda(\mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------|------------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1066 | Mak        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | PEG        |     |       | 0,206·x <sup>7</sup> +0,293·x <sup>2</sup> +0,5·x+0,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      | RAVIS      |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | Mak        |     | 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1312 | PEG        |     |       | $0,206 \cdot x^7 + 0,29 \cdot x^2 + 0,5023 \cdot x + 0,0007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      | RAVIS      |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1056 | Mak        |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | PEG        | 1/2 | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | Wi1        |     | 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1248 | Mak        |     | 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | PEG        |     | 8     | $0,2083 \cdot x^5 + 0,3333 \cdot x^2 + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|      | Wi1        |     | 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1344 | Mak        | ]   | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | PEG        |     | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | Wi1        |     | 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | Mak        | 1/2 | - 1   | $0,125 \cdot x^{11} + 0,4167 \cdot x^2 + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 2/3 |       | $0,125 \cdot x^7 + 0,0417 \cdot x^5 + 0,2083 \cdot x^3 + 0,3333 \cdot x^2 + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |            | 3/4 | т     | $0,2083 \cdot x^{5} + 0,25 \cdot x^{3} + 0,3333 \cdot x^{2} + 0,2083 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 648  |            | 5/6 |       | $0,7917 \cdot x^{3} + 0,0833 \cdot x^{2} + 0,125 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|      | PEG        | 1/2 |       | $0,125 \cdot x^{11} + 0,4167 \cdot x^2 + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 2/3 |       | $0,125 \cdot x^7 + 0,0417 \cdot x^5 + 0,2083 \cdot x^3 + 0,3333 \cdot x^2 + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |            | 3/4 | 6     | $0,2083 \cdot x^5 + 0,25 \cdot x^3 + 0,3333 \cdot x^2 + 0,2083 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      |            | 5/6 | 0     | $0,7917 \cdot x^{3} + 0,0833 \cdot x^{2} + 0,125 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|      | Wi2        | 1/2 |       | $0,125 \cdot x^{11} + 0,4167 \cdot x^2 + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 2/3 |       | $0,125 \cdot x^7 + 0,0417 \cdot x^5 + 0,2083 \cdot x^3 + 0,3333 \cdot x^2 + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |            | 3/4 | 4     | $0,2083 \cdot x^{5} + 0,25 \cdot x^{3} + 0,3333 \cdot x^{2} + 0,2083 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      | Mak        | 5/6 |       | $0,7917 \cdot x^{3} + 0,0833 \cdot x^{2} + 0,125 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|      |            | 1/2 | 6     | $0,125 \cdot x^{10} + 0,0417 \cdot x^{5} + 0,375 \cdot x^{2} + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|      |            | 2/3 |       | $0,125 \cdot x' + 0,0833 \cdot x^{5} + 0,5 \cdot x^{2} + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 3/4 |       | $0,2917 \cdot x^{3} + 0,5 \cdot x^{2} + 0,2083 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      |            | 5/6 | 4     | $0,6667 \cdot x^{2} + 0,2083 \cdot x^{2} + 0,125 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 1296 | PEG        | 1/2 |       | $0,125 \cdot x^{-1} + 0,041 / \cdot x^{-1} + 0,3 / 5 \cdot x^{-1} + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      |            | 2/3 | 6     | $0,125 \cdot x^{2} + 0,0833 \cdot x^{3} + 0,5 \cdot x^{2} + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |            | 5/4 |       | 0,291/x+0,5x+0,2083 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      |            | 5/6 | (     | 0,666/x+0,2083x+0,125x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|      | Wi2        | 1/2 | 6     | $0,125 \cdot x^{-1} + 0,041 / \cdot x^{-1} + 0,3 / 5 \cdot x^{-1} + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      |            | 2/3 | 4     | $0,125 \cdot x + 0,0853 \cdot x + 0,5 \cdot x + 0,2917 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      |            | 5/4 | 0     | 0,291/x + 0,5x + 0,2085x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 1944 | Mak<br>PEG | 3/0 | 6     | $0,0007x \pm 0,2005x \pm 0,125x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|      |            | 1/2 | 6     | $0,125 \cdot x + 0,041 / \cdot x + 0,3 / 5 \cdot x + 0,4583 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|      |            | 2/3 |       | $0,166/x^2+0,041/x^2+0,5x^2+0,291/x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|      |            | 5/4 |       | $0,25 \cdot x^{2} + 0,541 / \cdot x^{2} + 0,2083 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|      |            | 5/6 | 0     | $0,416/x^2+0,4583\cdot x^2+0,125\cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 1/2 | ð     | $0,125x^{+}+0,0417x^{+}+0,57x^{+}+0,4583x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      |            | 2/3 | 6     | 0.100/x + 0.041/x + 0.5x + 0.291/x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|      |            | 5/4 |       | $0,25^{-1} + 0,5417^{-1} + 0,2005^{-1} \times 0,4167^{-1} + 0,582^{-1} \times 0,125^{-1} \times 0$ |  |  |  |
|      |            | 1/2 |       | $0.125 \cdot x^{10} + 0.0417 \cdot x^3 + 0.275 \cdot x^2 \pm 0.4582 \cdot x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      | Wi2        | 2/2 | 1     | $0.125 x^{-1} 0.0417 x^{-1} 0.575^{-1} 0.4305^{-1} x^{-1} 0.417 x^{-1} 0.515^{-1} x^{-1} 0.417 x^{-1} 0.517 x^{-1} 0.2017 x^{-1} 0.517 x^{-1} 0.517$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|      |            | 3/4 | 6     | $0.25 \cdot r^{5} + 0.5417 \cdot r^{2} + 0.2083 \cdot r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |            | 5/6 | 6     | $0.4167 \cdot r^{3} + 0.4583 \cdot r^{2} + 0.125 \cdot r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| L    |            | 5/0 | 0     | 0,110/ A + 0,100 A + 0,120 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

## Таблица 2. Оценка количества циклов и их метрик связанности в исследуемых графах Таннера

|      |       |     |          |            |            |            | 1           |             |             |             |
|------|-------|-----|----------|------------|------------|------------|-------------|-------------|-------------|-------------|
| N    | Сокр. | R   | $n(g_0)$ | $n(g_0+2)$ | $n(g_0+4)$ | $n(g_0+6)$ | $S(\eta_0)$ | $S(\eta_1)$ | $S(\eta_2)$ | $S(\eta_3)$ |
| 1066 | Mak   | 1/2 | 2577     | 45712      | 895095     | 18151786   | 0           | 0           | 0           | 0           |
|      | PEG   |     | 383      | 38787      | 656038     | 12377406   | 7           | 6           | 6           | 2           |
|      | RAVIS |     | 3047     | 58188      | 1208187    | 25906904   | 1           | 1           | 1           | 1           |
|      | Mak   |     | 2486     | 45268      | 881218     | 17839027   | 0           | 0           | 0           | 0           |
| 1312 | PEG   |     | 96       | 37908      | 643199     | 12079373   | 7           | 6           | 6           | 6           |
|      | RAVIS |     | 2972     | 55693      | 1143747    | 24338489   | 1           | 1           | 1           | 1           |
|      | Mak   |     | 663      | 7099       | 91191      | 1168366    | 1           | 0           | 1           | 0           |
| 1056 | PEG   |     | 5042     | 74607      | 868060     | 10795584   | 1           | 1           | 1           | 0           |
|      | Wi1   |     | 440      | 6886       | 75758      | 967230     | 8           | 5           | 5           | 2           |
| 1248 | Mak   |     | 631      | 7436       | 90667      | 1171857    | 1           | 0           | 0           | 0           |
|      | PEG   |     | 4016     | 75351      | 861152     | 10624572   | 1           | 1           | 1           | 1           |
|      | Wi1   |     | 312      | 7644       | 75244      | 974818     | 8           | 5           | 5           | 3           |
| 1344 | Mak   |     | 649      | 7347       | 92005      | 1186190    | 1           | 1           | 0           | 0           |
|      | PEG   |     | 3523     | 76346      | 866175     | 10650354   | 1           | 0           | 1           | 1           |
|      | Wi1   |     | 280      | 7476       | 75712      | 974568     | 8           | 5           | 5           | 2           |
|      | Mak   | 1/2 | 86       | 8661       | 227711     | 6517545    | 2           | 0           | 0           | 0           |
|      |       | 2/3 | 28       | 10306      | 279512     | 8508927    | 3           | 0           | 0           | 1           |
|      |       | 3/4 | 203      | 21525      | 778058     | 30183786   | 2           | 1           | 0           | 0           |
|      |       | 5/6 | 2522     | 180478     | 12708504   | -          | 1           | 0           | 1           | -           |
|      |       | 1/2 | 4038     | 130027     | 2971601    | 76809500   | 1           | 1           | 1           | 1           |
| 648  | DEG   | 2/3 | 7259     | 200451     | 5511750    | -          | 1           | 1           | 1           | -           |
| 048  | FEO   | 3/4 | 13780    | 430972     | 14561200   | -          | 1           | 1           | 1           | -           |
|      |       | 5/6 | 36105    | 1509866    | 69638364   | -          | 2           | 1           | 2           | -           |
|      |       | 1/2 | 3942     | 123012     | 2760507    | 70568721   | 11          | 11          | 10          | 2           |
|      | Wi2   | 2/3 | 8046     | 193023     | 5288679    | -          | 3           | 2           | 2           | -           |
|      |       | 3/4 | 54       | 13662      | 433431     | 14510070   | 3           | 3           | 2           | 3           |
|      |       | 5/6 | 32346    | 1574775    | 68153562   | -          | 2           | 1           | 3           | -           |
|      | Mak   | 1/2 | 4787     | 105988     | 2551778    | -          | 0           | 1           | 0           | -           |
|      |       | 2/3 | 10390    | 295511     | 9223157    | -          | 1           | 0           | 1           | -           |
|      |       | 3/4 | 17274    | 588316     | 21731924   | -          | 0           | 1           | 0           | -           |
| 1296 |       | 5/6 | 6        | 31339      | 1297670    | 58085184   | 3           | 0           | 1           | 1           |
|      | PEG   | 1/2 | 22       | 82419      | 1528348    | 34502257   | 27          | 0           | 1           | 1           |
|      |       | 2/3 | 4253     | 256305     | 7025399    | -          | 1           | 1           | 1           | -           |
|      |       | 3/4 | 13609    | 510308     | 17851513   | -          | 1           | 1           | 1           | -           |
|      |       | 5/6 | 26607    | 1096676    | 47002182   | -          | 1           | 1           | 1           | -           |
|      | Wi2   | 1/2 | 2754     | 68229      | 1470906    | 33283602   | 10          | 10          | 3           | 2           |
|      |       | 2/3 | 108      | 7830       | 237627     | 6885540    | 11          | 6           | 6           | 6           |
|      |       | 3/4 | 14040    | 512433     | 17523054   | -          | 3           | 2           | 3           | -           |
|      |       | 5/6 | 22842    | 1141830    | 46268496   | -          | 2           | 1           | 3           | -           |
| 1944 | Mak   | 1/2 | 4613     | 101626     | 2426214    | 60052447   | 1           | 1           | 1           | 1           |
|      |       | 2/3 | 10621    | 297956     | 9305797    | -          | 0           | 0           | 0           | -           |
|      |       | 3/4 | 12472    | 384127     | 12824133   | -          | 0           | 1           | 0           | -           |
|      |       | 5/6 | 16711    | 573719     | 21080924   | -          | 0           | 1           | 0           | -           |
|      | PEG   | 1/2 | 77959    | 1518877    | 34302934   | -          | 1           | 1           | 1           | -           |
|      |       | 2/3 | 160      | 273336     | 7193269    | -          | 6           | 1           | 1           | -           |
|      |       | 3/4 | 4124     | 379411     | 11427397   | -          | 1           | 1           | 1           | -           |
|      |       | 5/6 | 12644    | 549913     | 19465562   | -          | 1           | 0           | 1           | -           |
|      | Wi2   | 1/2 | 3321     | 70551      | 1465371    | 33089445   | 10          | 10          | 4           | 3           |
|      |       | 2/3 | 81       | 6399       | 251667     | 7072515    | 12          | 7           | 5           | 5           |
|      |       | 3/4 | 9558     | 346923     | 11269044   | -          | 3           | 2           | 2           | -           |
|      |       | 5/6 | 14418    | 563193     | 19125801   | -          | 3           | 1           | 2           | -           |

В соответствии с результатами, представленными в табл. 2, можно обратить внимание на то, что коды, обозначенные аббревиатурами Wi1 и Wi2, обладают относительно высоким средним уровнем спектра  $S(\eta_i)$ . Кроме этого на общем фоне выделяются некоторые коды, синтезированные по алгоритму PEG, обладающие аналогичной особенностью. Объяснение относительно высокого среднего уровня спектральных составляющих только для 2-х кодов PEG из всего ансамбля заключено в самом алгоритме синтеза, согласно которому циклы короткой длины будут появляться по мере увеличения общего количества вершин. Поэтому если начинать построение графа с вершин с меньшим весом, то короткие циклы будут по большей части содержаться в наименее разреженной области проверочной матрицы. Это в свою очередь способствует увеличению среднего значения спектра  $S(\eta_i)$ .

Рассмотрим кривые энергетической эффективности

исследуемых кодов с низкой плотностью проверок на чётность в канале с АБГШ и сопоставим графические и табличные результаты. На каждом из графиков представлены зависимости вероятности битовой ошибки (*p*<sub>b</sub>) от отношения сигнал-шум для 3-х категорий кодов, обозначенных соответствующими аббревиатурами, значения которых описаны ранее. Целью сопоставления результатов декодирования и анализа кодовых конструкций является выявление корреляционных связей между значениями метрик связанности и уровнем порога насыщения битовой ошибки на кривых энергетической эффективности.

Анализируя полученные зависимости можно сделать ряд умозаключений, а именно:

1. Низкий уровень порога для рассмотренных ансамблей нерегулярных кодов наблюдается в том случае, когда минимальные значения метрик  $\eta_0$ ,  $\eta_1$ ,  $\eta_2$  оказываются менее трёх для скорости кодирования R = 0.5. При этом играет роль именно совокупное значение метрик для циклов разной длины. В частности для кода PEG с параметрами N = 1296,  $g_0 = 6$ , R = 0.5 минимальное значение метрики связанности для цикла длиной с обхват графа равно 27, что является максимальной величиной для всех возможных кодов. Однако, это не приводит к существенному снижению эффекта дна согласно рис. 2, т.к. остальные отсчёты спектра  $S(\eta_i)$ ,  $i \neq 0$ принимают значения нуля либо единицы.

2. Увеличение обхвата графа не приводит к снижению уровня порога насыщения вероятности битовой ошибки, что характерно для кодов PEG с длинами *N*=1056, 1296 и 1344.







Рис. 2. Эффективность декодирования (N = 1296 бит) LDPC кодов с различными способами синтеза проверочных матриц при  $R = \frac{1}{2}$  3. Увеличение скорости спада характеристик  $p_b(E_b/N_0)$  в области относительно малых шумов достигается из-за двух факторов: увеличения значений метрик связанности для циклов разной длины, а также уменьшения общего количества коротких циклов в графе Таннера.



#### Заключение

В работе проведено исследование эффективности декодирования нерегулярных квазициклических LDPC кодов, полученных из современных стандартов беспроводной передачи данных либо синтезированных на основе известных алгоритмов. Оценка энергетического выигрыша от кодирования в области малых шумов привязывалась с критерию минимизации спектра метрик связанности графа Таннера. Также был ограничен обхват графа на уровне 6 либо 8. Полученные результаты свидетельствуют о целесообразности использования предлагаемого подхода и требуют дополнительных подтверждений для кодов различной скорости и весовых распределений, что является одним из направлений дальнейших исследований.

Исследование выполнено за счет гранта Российского научного фонда (проект 14-19-01263) в Рязанском государственном радиотехническом университете.

#### Литература

1. Ryan W.E. and S. Lin. «Channel Codes. Classical and Modern», Cambridge University Press, 2009.

2. MacKay D. and Postol M.S., «Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes», Electronic Notes Theoretical Computer Science, vol. 74, 2003.

3. Richardson T.J., «Error floors of LDPC codes», in Proc. 41th Allerton Conf. Commun., Computing Control, Oct. 2003.

4. Di C., Proietti D., Telatar E., Richardson T., and Urbanke R., «Finitelength analysis of low-density parity-check codes on the binary erasure channel», IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

5. Vasic B., Chilappagari S., Nguyen D., and Planjery S., «Trapping set ontology», Proc. 47th Annual Allerton Conf. on Commun., Control and Computing, Monticello, IL, Sept. 2009, pp. 1-7.

6. Harary F., Manvel B. On the Number of Cycles in a Graph. Matematick'y casopis, 1971, vol. 21, no. 1, pp. 55-63.

7. Halford T.R., Chugg K.M. An Algorithm for Counting Short Cycles in Bipartite Graphs. IEEE Transactionson Information Theory, 2006, vol. 52, no. 1, pp. 287–292.

8. Воропаев А.Н., Учёт обхвата при подсчёте коротких циклов в двудольных графах, Информационные процессы, Том 11, № 2, 2011, стр. 225–252.

9. MacKay D., «Good error-correcting codes based on very sparse matrices», IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

10. Hu X.-Y., Eleftheriou E., and Arnold D.-M., «Progressive edge-growth Tanner graphs», in Proc. IEEE GlobeCom, Nov. 2001, vol. 2, pp. 995-1001.

11. Declercq D., Fossorier M., Biglieri E., Channel Coding. Theory, Algorithms, and Applications. Academic Press Library in Mobile and Wireless Communications, 2014.

12. ГОСТ Р 54309-2011. «Аудиовизуальная система реального времени (РАВИС). Процессы формирования кадровой структуры, канального кодирования и модуляции для системы цифрового наземного узкополосного радиовещания в ОВЧ диапазоне. Технические условия».