УДК 621.397; 004.92

АЛГОРИТМ УПРОЩЕННОЙ КОМПЕНСАЦИИ ДИСТОРСИИ ПРИ ПРОЕЦИРОВАНИИ ВИДЕОИЗОБРАЖЕНИЯ НА АСФЕРИЧЕСКИЕ ОТРАЖАЮЩИЕ ПОВЕРХНОСТИ АПРИОРНО НЕИЗВЕСТНОЙ ФОРМЫ

Холопов И.С., к.т.н., доцент кафедры радиотехнических систем Рязанского государственного радиотехнического университета, e-mail: kholopov.i.s@rsreu.ru.

Ключевые слова: проекционные системы индикации, дисторсия, предыскажения, билинейная интерполяция.

Введение

Проекционные системы индикации (ПСИ) представляют собой комплексные оптические системы, позволяющие отображать в поле зрения оператора дополнительную информацию [1–4], и используются как в военной авиации [1, 2], так и в коммерческих приложениях «виртуальной реальности» [3]. ПСИ просветного типа, в которых видеоинформация накладывается на изображение внешнего пространства, в зарубежной литературе обозначают аббревиатурой HUD (от англ. «Head-Up-Display») [4]. Большинство выпускаемых и перспективных HUD основано на использовании селективного оптического покрытия, наносимого на поверхность оптического светоделительного элемента – комбинера (рис. 1) [1, 4, 5]. На рис. 1:

 зрачковая зона – область расположения глаз наблюдателя;

2) комбинер;

3) плоскость промежуточного изображения;

- 4) проекционный объектив;
- 5) корректирующий клин;

6) генератор двумерных изображений – LCD-матрица (микродисплей).

Для получения минимальных габаритных размеров для ПСИ светоделительная (отражающая) поверхность комбинера должна иметь не плоскую, а вогнутую форму: сферическую или, что более предпочтительно, асферическую [5, 6].

Рис. 1. Оптическая система HUD коллиматорного типа с трассировкой хода световых лучей

Приведены аналитические выражения для упрощенного формирования предыскажений кадра видеоизображения, проецируемого на асферическую отражающую поверхность априорно неизвестной формы.

> Поскольку поверхность комбинера развернута как по отношению к глазам наблюдателя, так и по отношению к проекционному объективу [4–6], то при относительно больших полях зрения, наблюдаемых двумя глазами, и большом выносе выходного зрачка (области размещения глаз наблюдателя), она вносит трансформацию световых пучков и строит их наклонное изображение с дисторсионными искажениями (ДИ), а также аберрациями (отклонениями от гомоцентричности) внеосевых световых пучков – комой и астигматизмом [6], вызывающими размытие и нерезкость изображения.

> Практика разработки и расчетов HUD для ПСИ показывает [2, 5, 6], что осуществить компенсацию ДИ применением только оптических элементов не удается, поэтому необходимо внесение предыскажений (ПИ) в изображение, формируемое матрицей микродисплея. Аналитическое описание ДИ, вносимых проекционной системой HUD, затруднено, во-первых, нелинейными функциями описания асферических поверхностей (АП) [7]:

$$Z(S) = \frac{cS^2}{1 + \sqrt{1 - (K+1)c^2S^2}} + A_1S^4 + A_2S^6 + A_3S^8 + A_4S^{10},$$

где $S = \sqrt{x^2 + y^2}$, K – параметр, определяющий тип поверхности (табл. 1), c и A_1 – A_4 – некоторые постоянные, а, во-вторых, изменяемым положением микродисплеев относительно оптических центров АП комбинера (например, в бинокулярных HUD расстояние между центрами микродисплеев регулируется в соответствии с базой глаз оператора [1-3, 5]).

raonuua i

K	Поверхность
< -1	гиперболоид
-1	параболоид
-1 < K < 0	эллипсоид вращения
	вокруг большей оси
0	сфера
> 0	эллипсоид вращения
20	вокруг меньшей оси

В связи с этим, как отмечено в [6], необходимо аналитически описать ДИ, вносимые ПСИ, и внести ПИ таким образом, чтобы окончательная величина дисторсии в пространстве изображений соответствовала принятым для HUD допускам. Это может быть выполнено, например, путем вычисления коэффициентов полиномиального разложения функций ДИ и ПИ.

Цель работы: разработка алгоритма упрощенного формирования ПИ для компенсации ДИ при априорно неизвестной форме АП, на которую проецируется видеоизображение.

Алгоритмы полиномиальной компенсации ДИ

ДИ оптико-электронных устройств принято описывать комбинацией радиальной и тангенциальной дисторсий [7-9], для компенсации которых на практике используют формулы:

$$x_{0} = x'(1 + k_{1}r^{2} + k_{2}r^{4}) + 2p_{1}x'y' + p_{2}(r^{2} + 2x'^{2}) + x_{c},$$

$$y_{0} = y'(1 + k_{1}r^{2} + k_{2}r^{4}) + p_{1}(r^{2} + 2y'^{2}) + 2p_{2}x'y' + y_{c},$$
(1)

где $r^2 = {x'}^2 + {y'}^2$, $x' = x_d - x_c$, $y' = y_d - y_c$, k_1 и k_2 – коэффициенты компенсации радиальной дисторсии, p_1 и p_2 – коэффициенты компенсации тангенциальной дисторсии, (x_d, y_d) – координаты пикселя изображения с ДИ, (x_c, y_c) – координаты центра дисторсии.

Другим подходом является вычисление поправок ($\Delta x_0, \Delta y_0$) к координатам каждого пикселя с использованием полиномов вида [10]:

$$x_{0} = xd + \Delta x_{0},$$

$$y_{0} = yd + \Delta y_{0},$$

$$Dx_{0} = a_{0} + a_{1}x' + a_{2}y' + a_{3}x'^{2} + a_{4}x'y' + a_{5}y'^{2} + a_{6}x'^{3} + a_{7}x'^{2}y' + a_{8}x'y'^{2} + a_{9}y'^{3},$$

$$Dy_{0} = b_{0} + b_{1}y' + b_{2}x' + b_{3}y'^{2} + b_{4}y'x' + b_{5}x'^{2} + b_{6}y'^{3} + b_{7}y'^{2}x' + b_{8}y'x'^{2} + b_{9}x'^{3}.$$
(2)

Для определения параметров компенсации дисторсии k_1 , k_2 , p_1 , p_2 , x_c , y_c и коэффициентов М.М. Русинова [10, 11] a_i , b_i , $i = \overline{0, 9}$, в выражениях (1) и (2) соответственно используется эталонное тестовое изображение (например, приводимое в [9] или [11]) и изображение, полученное с диагностической камеры, установленной в зрачковой зоне 1 (рис. 1). Вычисление параметров основано на составлении переопределенной системы из M пар уравнений вида

$$\begin{vmatrix} x_{0i} \\ y_{0i} \end{vmatrix} = F\left(\begin{vmatrix} x_{di} \\ y_{di} \end{vmatrix} \right), \ i = \overline{1, M} ,$$
(3)

из выражений (1) или (2) и ее решении численными методами Ньютона или Левенберга-Маквардта [8, 11]. В рассматриваемых формулах (1) и (2) число неизвестных параметров, определяющих ДИ, равно 6 и 20, поэтому для их нахождения требуется решение системы уравнений (3), составленной соответственно из M > 3 и M > 10 пар уравнений.

Недостатком методов (1) и (2) является сложность коррекции ДИ во внелабораторных условиях (при отсутствии диагностической камеры и стенда измерения параметров ДИ). Поскольку значения параметров компенсации дисторсии k_1 , k_2 , p_1 , p_2 , x_c , y_c в (1) и a_i , b_i , $i = \overline{0, 9}$, в (2), как показано в [5, 8, 11], отличаются друг от друга на порядки, это затрудняет подбор их значений методом перебора с фиксированным шагом.

Также на практике для формирования ПИ удобно знать аналитическое выражение не для $F(\cdot)$, а для обратного функционала F^{-1} :

$$\begin{vmatrix} x \\ y \end{vmatrix} = F^{-1} \left(\begin{vmatrix} i \\ j \end{vmatrix} \right),$$

чтобы задавая целочисленные значения координат пикселей (i, j) кадра видеоизображения с ПИ вычислять соответствующие им дробные координаты (x, y) пикселей в исходном кадре. Для нелинейных выражений (1) и (2) нельзя аналитически задать обратный функционал $F^1(\cdot)$, реализующий однозначное отображение (i, j) в (x, y).

Алгоритм упрощенной компенсации ДИ

Идея упрощенного формирования ПИ основана на характерных для HUD типах ДИ [2, 6]. Схематично исходное полутоновое изображение показано на рис. 2, а; ДИ, вносимые комбинером – на рис. 2, б; изображение с ПИ – на рис. 2, в, где *W* и *H* – соответственно ширина и высота кадра видеоизображения в пикселях.

Рис. 2. Кадры видеоизображения: а) исходный кадр; б) отображение кадра на АП; в) кадр с ПИ

На рис. 2 можно выделить 3 типа характерных для HUD ДИ:

1) искажения типа «парабола» в направлении оси *OY*; данный тип ДИ при $p_1 = p_2 = 0$ может быть описан уравнениями (1), если для координат центра радиальной дисторсии справедливы условия:

$$\begin{cases} x_c = W / 2, \\ y_c > H; \end{cases}$$

искажения типа «трапеция» в направлении оси ОХ;
 неравномерность масштаба в направлении оси ОУ.

ДИ типа 2) являются результатом проективного преобразования координат, а ДИ типов 1) и 3) – полиномиального [12].

Следовательно, аналитической функции, описывающей ДИ, необходимо сформировать ПИ таким образом, чтобы изображение в поле зрения оператора имело прямоугольную форму с равномерным масштабом по оси *OY*.

Алгоритм упрощенной компенсации ДИ заключается в последовательном формировании ПИ, компенсирующих ДИ типов 1), 2) и 3) исходного изображения.

Для формирования ПИ по оси *ОУ* типа «парабола» выполняется преобразование:

$$x_{i} = i,$$

$$y_{j} = \begin{cases} \frac{j - \frac{4b_{y}H(i - W/2)^{2}}{W^{2}}}{1 - b_{y}}, & b_{y} > 0, \\ \frac{j - b_{y}H\left[\frac{4(i - W/2)^{2}}{W^{2}} - 1\right]}{1 + b_{y}}, & b_{y} < 0, \end{cases}$$
(4)

где (i, j) – целочисленные координаты пикселя изображения с предыскажениями, расположенного на пересечении *i*-го столбца и *j*-й строки; (x_i, y_j) – в общем случае дробные координаты пикселя в исходном изображении, соответствующие точке (i, j) после выполнения (4), i = 0, 1, ..., W-1, j = 0, 1, ..., H-1; b_y – коэффициент, определяющий относительную кривизну в направлении оси OY, $b_y \in (-1, 1)$.

При априорно неизвестной форме АП и,

Для формирования ПИ по оси *ОХ* типа «трапеция» выполняется преобразование:

$$u_{i} = \begin{cases} x_{i} / [1 + tr_{x}(y_{bi} - H) / 2H] + W / 2, \ tr_{x} > 0, \\ x_{i} / (1 + tr_{x}y_{bi} / 2H) + W / 2, \ tr_{x} < 0, \\ v_{j} = y_{j}, \end{cases}$$
(5)

где tr_x – коэффициент, определяющий в зависимости от его знака относительное сжатие верхней или нижней стороны изображения вдоль оси OX, $tr_x \in [-1, 1]$, (u_i, v_j) – координаты пикселя в исходном изображении, соответствующие точке (i, j) после выполнения (4) и (5).

Для компенсации неравномерности масштаба по оси *ОУ* используется выражение:

$$x_{0i} = u_i, y_{0j} = v_j \Big[2 - sc_y + 2(sc_y - 1) \cdot j / H \Big] / sc_y,$$
(6)

где sc_y – коэффициент, показывающий относительное изменение масштаба вдоль оси *OY*, $sc_y \in (0, 2)$.

Алгоритм упрощенного формирования ПИ изображений, проецируемых на АП, заключается в последовательном выполнении преобразований (4)-(6) и нахождении координат (x_{0i}, y_{0j}) в исходном изображении, соответствующих точке (i, j). Если для точки (x_{0i}, y_{0j}) одновременно выполняются неравенства $0 \le x_{0i} \le W-1$ и $0 \le y_{0i} \le H - 1$ (точка 1 на рис. 2, а и в), то для нахождения яркости пикселя *I*(*i*, *j*) применяется [12, 13] либо правило «ближайшего соседа», либо билинейная интерполяция по соседним точкам $I([x_{0i}[, [y_{0i}[),$ $I(]x_{0i}[+1,]y_{0j}[), I(]x_{0i}[,]y_{0j}[+1)$ и $I(]x_{0i}[+1,]y_{0j}[+1),$ где оператор] · [означает округление до ближайшего

меньшего целого. В противном случае принимается I(i, j) = 0 (точка 2 на рис. 2, а и в).

При использовании правила «ближайшего соседа» яркость пикселя I(i, j) находится по формуле:

$$I(i,j) = \begin{cases} I([x_{0i}], [y_{0j}]), \\ (x_{0i}] = X_{0i}[<0,5) & (y_{0j}] = Y_{0j}[<0,5), \\ I([x_{0i}] = X_{0i}[\geq0,5) & (y_{0j}] = Y_{0j}[<0,5), \\ I([x_{0i}], [y_{0j}] = 1), \\ I([x_{0i}], [y_{0j}] = 1), \\ (x_{0i}] = X_{0i}[<0,5) & (y_{0j}] = Y_{0j}[\geq0,5), \\ I([x_{0i}] = 1, [y_{0j}] = 1), \\ I([x_{0i}] = 1, [y_{0i}] = 1), \\ I([x_{0$$

При использовании билинейной интерполяции яркость пикселя *I*(*i*, *j*) находится по формуле:

$$I(i, j) = \left] I_{j} + (I_{j+1} - I_{j})(y_{0j} - \right] y_{0j} \right[] [,$$

$$\begin{split} & \mathsf{rge} \\ & I_{j} = I\left(\left[x_{0i} \left[, \right] y_{0j} \right[\right] \right) + (I\left(\left[x_{0i} \left[+1, \right] y_{0j} \right] \right] - \\ & -I\left(\left[x_{0i} \left[, \right] y_{0j} \right] \right) \right) \left(x_{0i} - \left[x_{0i} \right] \right), \\ & I_{j+1} = I\left(\left[x_{0i} \left[, \right] y_{0j} \left[+1 \right] \right) + (I\left(\left[x_{0i} \left[+1, \right] y_{0j} \left[+1 \right] \right) - \\ & -I\left(\left[x_{0i} \left[, \right] y_{0j} \left[+1 \right] \right) \right) \left(x_{0i} - \left[x_{0i} \right[\right] \right). \end{split}$$

Для компенсации ДИ, схематично показанных на рис. 2, б, можно ограничиться формулами (4)-(6).

Процедура подбора значений параметров tr_x , b_y и sc_y является эмпирической и заключается в поочередном (сначала подбирается значение tr_x, затем – b_y, затем – scy) переборе данных параметров с фиксированным шагом 0,005 или 0,01, начиная со значения 1: для компенсации ДИ, приведенных на рис. 2, б, *tr_x* декрементируется, а *b_v* и *sc_v* – инкрементируются. Перебор прекращается либо при достижении максимального визуального комфорта оператора (линии сетки тестового изображения на АП воспринимаются прямыми, параллельными и эквидистантными), либо при максимальной близости тестового изображения и изображения диагностической камеры (мера близости минимизируется по методу наименьших квадратов [12, 13]). В последнем случае при подборе параметра tr_x минимизируется квадрат ошибки относительно вертикальных линий тестового изображения, при подборе b_v – относительно горизонтальных линий и при подборе *sc_v* – относительно как вертикальных, так и горизонтальных линий.

Недостатками всех рассмотренных алгоритмов формирования ПИ для компенсации ДИ (1), (2) и (4)-(6) являются потеря части полезной информации из кадра видеоизображения (при невыполнении условий $0 \le x_{0i} \le W - 1$ и $0 \le y_{0i} \le H - 1$) и снижение разрешающей способности.

Оценка вычислительных затрат

Количество элементарных вычислительных операций (ЭВО) на реализацию преобразований (4)-(6) и определение яркости пикселей в изображении с ПИ размером *W* x *H* пикселей приведено в табл. 2.

				Таблица 2
Операция	«+»	«*»	«/»	ЭВО
Алгоритм «ближайшего соседа»	9WH	9 <i>WH</i>	WH	19 <i>WH</i>
Алгоритм би- линейной ин- терполяции	18 <i>WH</i>	12 <i>WH</i>	WH	31 <i>WH</i>

В табл. 3 приведена скорость обработки (кадров/с) видеопоследовательности с размером кадра *W* х *H* пикселей в реальном масштабе времени с использованием разных ПЭВМ и алгоритма билинейной интерполяции. *Таблица 3*

Размер кадра, пикс. х пикс.	800x600	1024x768	1280x1024
Pentium Dual CPU E2200, 2,2 ГГц, ОЗУ 1 Гб	14,5	8,7	5,3
Intel Core <i>i5</i> , 2,4 ГГц, ОЗУ 4 Гб	45,9	27,5	16,8

Из табл. З видно, что для формирования ПИ в реальном масштабе времени рациональнее вычислять координаты (x_{0i} , y_{0j}) только один раз и затем хранить их в памяти ПЗУ: например, в ячейку с адресом 2(jW + i) записывать координату x_{0i} , вычисленную в соответствии с (4)-(6), а в ячейку с адресом 2(jW + i) + 1 – координату y_{0i} . Исходя из предположения, что для хранения координат используется ПЗУ с ячейкой памяти 16 бит, минимальный объем ПЗУ, требуемый для разных размеров кадра, приведен в табл. 4.

			таолица 4
Размер кадра, пикс.	800x600	1024x768	1280x1024
Объем ПЗУ, Мбит	7,68	12,58	20,97

Результаты моделирования

Имитационное моделирование, связанное с формированием на ПЭВМ изображений размером 1024 x 768 пикселей (телевизионная испытательная таблица ТИТ-0249 и таблица ISO 12233) с ПИ, показало, что по сравнению с исходным изображением (рис. 3) при

$$|b_{y}| < 0,2, |tr_{x}| < 0,8u |sc_{y}| - 1 |<0,15$$
 (7)

разрешающая способность по горизонтали и вертикали ухудшается не более чем на 20 % (рис. 4 и 5).

Сравнение с алгоритмом компенсации дисторсии (2), в котором коэффициенты Русинова вычислялись с использованием метода Левенберга-Маквардта по переопределенной системе из 48 уравнений, проводилось на тестовом изображении размером 1280 х 1024 пикселей типа «сетчатое поле». Результаты эксперимента с диагностической камерой показали, что среднеквадратическое отклонение (СКО) пикселей изображения на АП при формировании ПИ по (4)-(6) и выполнении условий (7) относительно тестового изображения составляет не более 1 пикселя, а при формировании ПИ по (2) – не более 0,4...0,5 пикселя. Несмотря на проигрыш по СКО в 2...2,5 раза алгоритм упрощенного формирования ПИ обеспечивает в 2-3 раза меньшие абсолютные искажения на краях проецируемого на комбинер изображения, а также позволяет оперативно (в течение 1-2 минут) изменять параметры компенсации ДИ (например, при изменении базы глаз оператора) без использования диагностической камеры, что важно для практических приложений.

Рис. 3. Тестовая ТВ таблица ТИТ-0249

Рис. 4. Кадр видеоизображения с ПИ
при
$$b_v = 0,2, tr_x = -0,8 u sc_v = 1,15$$

Рис. 5. Центральный фрагмент кадра с рис. 4

Заключение

Таким образом, рассмотренный алгоритм упрощенного формирования предыскажений позволяет изменением всего трех параметров скорректировать характерные для HUD с асферическими отражающими поверхностями дисторсионные искажения и может быть реализован в реальном масштабе времени.

Литература

1. Li H. Review and analysis of avionic helmet-mounted displays / H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, J. Zhang // Optical Engineering. – 2013, Vol. 52 (11). – P. 110901-1-110901-14.

2. Козлов А.В. Нашлемная система индикации / А.В. Козлов, И.Г. Денисов, Д.Н. Шарифуллина [Электронный ресурс] // Будущее машиностроения России: материалы VI Всерос. конф. молодых ученых и специалистов. – М.: МГТУ им. Н.Э. Баумана, 2013. – 1 эл. опт. диск (CD-ROM).

3. Hua H. Design of an ultra-light head-mounted projective display (HMPD) and its applications in augmented collaborative environments / H. Hua, C. Gao, L. Brown, F. Biocca, J.P. Rolland // Stereoscopic displays and virtual reality systems. Proceedings of SPIE. – 2002. – Vol. 4660. – P. 492-497.

4. Бахолдин А.В. Оптические устройства виртуальных дисплеев / А.В. Бахолдин, В.Н. Васильев, В.А. Гримм, Г.Э. Романова, С.А. Смирнов // Оптический журнал. – 2013. – № 5. – С. 17-24.

5. Melzer J.E. Head-mounted displays: designing for the user / J.E. Melzer, K.W. Moffitt. – McGraw-Hill, 1997. – 352 p.

6. http://www.media-phazotron.ru/?p=333. Проекционные системы отображения вторичной информации авиа- и автобазирования. Дата обращения – 30.06.14. 7. Malacara D. Handbook of optical design, 2nd edition/ D. Malacara, Z Malacara. – New York: Marcel Decker, 2004. – 522 p.

8. Hartley R. Multiple view geometry in computer vision/ R. Hartley, A. Zisserman: 2nd edition. – Cambridge: Cambridge University Press, 2003. – 656 p.

9. Tsai R.Y. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf TV cameras and lenses / R.Y. Tsai // IEEE Journal on Robotics and Automation. – 1987. – RA-3(4). – P. 323–344.

10. Лобанов А.Н. Фотограмметрия / А.Н. Лобанов: 2-е изд., перераб. и доп. – М.: Недра, 1984. – 552 с.

11. Коваленко В.П. Методика оценки дисторсии современных инфракрасных систем / В.П. Коваленко, Ю.Г. Веселов, И.В. Карпиков // Вестник МГТУ им. Н.Э. Баумана. Сер. «Приборостроение». – 2011. – № 1. – С. 98-107.

12. Грузман И.С. Цифровая обработка изображений в информационных системах / И.С. Грузман, В.С. Киричук, В.П. Косых, Г.И. Перетягин, А.А. Спектор. – Новосибирск: Изд-во НГТУ, 2000. – 168 с.

13. Визильтер Ю.В. Обработка и анализ изображений в задачах машинного зрения: курс лекций и практических занятий / Ю.В. Визильтер, С.Ю. Желтов, А.В. Бондаренко, М.В. Ососков, А.В. Моржин. – М.: Физматкнига, 2010. – 672 с.

SIMPLIFIED DISTORTION COMPENSATION ALGORITHM FOR PROJECTING VIDEO ON PRIORI UNKNOWN FORM ASPHERICAL REFLECTIVE SURFACES

Kholopov I.S.

Analytical expressions for simplified forming the predistortion of video frame that projected on priori unknown form aspherical reflecting surfaces is considered.

новые книги

Солонина А.И.

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ И МАТLAB / А.И. Солонина, Д.М. Клинский, Т.В. Меркучева, С.Н. Перов. – СПб.: БХВ-Петербург, 2013. – 512 с. (Учебная литература для вузов)

Москва: Техносфера, 2013. – 528 с.

Описываются базовые методы и алгоритмы цифровой обработки сигналов и средств их компьютерного моделирования в системе MATLAB. Даны основы алгоритмического языка MATLAB. Рассматриваются дискретные сигналы, линейные дискретные системы, дискретное преобразование Фурье с использованием алгоритмов БПФ, синтез и анализ КИХ- и БИХфильтров, в том числе с фиксированной точкой, спектральный анализ сигналов, многоскоростная обработка сигналов и адаптивная цифровая фильтрация.