УДК 004.932

# СЕГМЕНТАЦИЯ ОБЛАЧНЫХ ОБЪЕКТОВ НА ПАНХРОМАТИЧЕСКИХ ИЗОБРАЖЕНИЯХ ЗЕМНОЙ ПОВЕРХНОСТИ

**Ветров А.А.,** аспирант, инженер НИИ «Фотон» РГРТУ, e-mail: foton@rsreu.ru **Кузнецов А.Е.,** д.т.н., заместитель директора НИИ «Фотон» РГРТУ, e-mail: foton@rsreu.ru

**Ключевые слова:** сегментация облачности, алгоритмы кластерного анализа, коррекция фотометрических искажений.

#### Введение

В системах дистанционного зондиро-вания Земли (ДЗЗ) облачности отводится двоякая роль. Так, в гидрометеорологии облачные образования, наблюдаемые на спутниковых

снимках являются объектом изучения при определении погоды и климата планеты. Что касается систем ДЗЗ, предназначенных для картографирования земной поверхности, то для них облака являются мешающим фактором, поскольку закрывают наблюдаемую территорию, а участки, попадающие в тень от облаков, отображаются на изображениях с пониженной яркостью. Всё это затрудняет выполнение тематической обработки и оперативного дешифрирования материалов съёмки.

Задача выделения облачности возникает на этапе предварительной обработки спутниковых изображений с целью:

- оценки качества видеоматериалов по критерию отношения площади покрытой облачностью к площади снимка;
- исключения участков снимка, содержащих облака, при радиометрической коррекции, классификации объектов, построении ортопланов по множеству разновременных изображений и др.

В случае если выполняется спектрозональная или гиперспектральная съёмка, процедура распознавания и выделения облачности на многоканальных снимках упрощается за счёт использования колометрических или спектральных характеристик наблюдаемых объектов [1]. При панхроматической (одноканальной) съёмке подобные методы неприменимы, и распознавать облачные образования приходится на основе яркостных критериев. Поскольку известные алгоритмы пороговой сегментации не всегда позволяют получить хорошие результаты, то актуальными становятся исследования, направленные на достижение высокой скорости и надежности процедуры выделения облачности.

В настоящей работе предлагается комплексное решение задачи предварительной обработки панхроматических изображений, связанное не только с эффективной сегментацией облачных объектов, но и восстановлением яркостей затенённых участков снимка.

#### Алгоритмы сегментации облачности

Алгоритм выделения облачных объектов на изображении восстановлением яркостей

Рассматриваются пороговые и кластерные алгоритмы сегментации облачных объектов на панхроматических снимках высокого разрешения. Предложен модифицированный алгоритм к-средних, позволяющий достичь высокого качества сегментации облачных образований, и алгоритм улучшения визуальных характеристик изображений. Выполнено апробирование разработанных алгоритмов на снимках от КА «Ресурс-ДК».

 $B=\{b_{mn}\},\ m=\overline{1,M},\ n=\overline{1,N}\,,$  где  $b_{mn}$  — яркость пикселя с координатами  $(m,n),b_{mn}\in[0,b_{\max}]$ , сводится к разделению его на два класса объектов  $B_1$  и  $B_2$ , так, что  $B=B_1\cup B_2\,,\ B_1\cap B_2=\varnothing$  .

Класс  ${\it B}_{\!_{1}}$  состоит всего из одного объекта, включающего пиксели  $b_{\!_{mn}}$ , которые не принадлежат облачности. К классу  ${\it B}_{\,_{2}}$  относятся фрагменты снимка

 $B_{2i}$ ,  $B_2=\{B_{2i}\}$ ,  $i=1,2,\dots$ , с изображениями облачных образований. Поскольку облачные образования на снимке выглядят более ярко (рис. 1), то выполним их сегментацию с использованием порогового критерия: пиксель  $b_{mn}$  принадлежит облачному объекту, если  $b_{mn} \geq b_0$ , иначе  $b_{mn} \in B_1$ , где  $b_0$  — пороговое значение яркости пикселей.

Пороговое значение  $\,b_0\,$  определим с использованием метода максимизации межклассовой дисперсии [2], в соответствии с которым

$$b_0 = \max \sigma_B^2(b), b = 0, b_{\max}.$$

Значение межклассовой дисперсии  $\sigma_B^2(b)$  для кода яркости b определяется выражением

$$\sigma_B^2(b) = \frac{[bp(b) - \overline{b_1}]^2}{p(b)[1 - p(b)]},$$

где  $\stackrel{-}{b} = \frac{1}{MN} \sum\limits_{m=1}^{M} \sum\limits_{n=1}^{N} b_{mn}^{}$  ;  $\stackrel{-}{b_1}$  — средняя яркость пикселей,

для которых  $b_{mn} > b$ ; p(b) — вероятность того, что для случайного пикселя изображения  $b_{mn} < b$ ,

$$p(b) = rac{1}{MN} \sum_{i=1}^{b-1} h(i)$$
 , где  $h(i)$  – количество пикселей изображения, для которых  $b_{mn} = i$ .



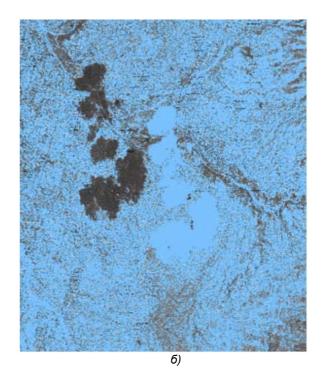


Рис. 1. Изображение земной поверхности с облачными образованиями. (а) — до обработки, (б) — после обработки пороговым алгоритмом (облачность подсвечена синим цветом)

Для исследования порогового алгоритма сегментации облачности были использованы 4 снимка земной поверхности от КА «Ресурс-ДК». Первый сюжет, приведенный на рис. 1, характеризуется наличием яркой и тёмной подстилающей поверхности и небольшим количеством облачных объектов  $B_{1i}$ , незначительно отличающихся по яркости от яркой подстилающей поверхности. На остальных изображениях присутствует подстилающая поверхность широкого яркостного диапазона и облачные образования различной яркости.

Поскольку на снимке человек без труда распознаёт облачные объекты, то качество работы алгоритмов сегментации будем сравнивать с ручным вариантом выделения облачности.

Обозначим через  $B_2^* = \{B_{2i}^*\}, i = \overline{1,I^*}$  множество выделенных вручную фрагментов снимка, содержащих изображения облачных объектов. Множеством  $B_2^H = \{B_{2i}^H\}, i = \overline{1,I^H}$  опишем облачные объекты, выделенные с помощью порогового алгоритма сегментации. Количество объектов, ложно отнесённых к облачности, обозначим переменной  $I_O^H$ ,  $I_O^H$ , а переменной  $I_I^H$  — число нераспознанных облачных образований,  $I_I^H < I^*$ . Общую площадь снимка, занимаемую объектами множества  $B_2^*$  обозначим через  $S^*$ , а площадь, занимаемую объектами множества  $B_2^R$ , обозначим через  $S^H$ .

Тогда эффективность алгоритма сегментации можно оценить по следующим показателям:

— проценту ложно пропущенных облачных образований,  $\rho_{_{I\!I}}=\frac{I_{_{I\!I}}^{_{I\!I}}}{I^{^*}}\cdot 100\%$  ;

- проценту ложно обнаруженных облачных объектов,

$$\rho_{JI} = \frac{I_O^{II}}{I^*} \cdot 100\%;$$

— проценту общей площади выделенных облаков по отношению к истинному значению,  $S = \frac{S^{II}}{S^*} \cdot 100\%$  .

В таблицах 1 и 2 приведены значения критериев качества сегментации для четырёх тестовых изображений. Как следует из таблиц, для порогового алгоритма доля ложно обнаруженных облачных объектов составляет значительную величину на каждом из снимков. К основным причинам такого явления относятся:

- неточное определение порога из-за размытости пика функции межклассовой дисперсии  $\sigma^2_{\scriptscriptstyle \mathcal{B}}(b)$ ;
- присутствие различных типов облачности, т.е. наличие нескольких классов облачных объектов;
- отнесение к облачности небольших объектов земной поверхности, например, крыш домов и других инженерных сооружений.

Таблица. 1. Показатели эффективности алгоритмов сегментации по количеству выделенных областей

| Номер<br>снимка | Пороговый<br>алгоритм  |                       | Алгоритм k-<br>средних |                     | Алгоритм<br>k-средних с<br>обучением |                      |
|-----------------|------------------------|-----------------------|------------------------|---------------------|--------------------------------------|----------------------|
|                 | $ ho_{_{ec{ec{H}}}}$ , | $ ho_{_{I\!\!I}}$ , % | $ ho_{_{arDeta}}$ ,    | $ ho_{_{I\!I}}$ , % | $ ho_{{\scriptscriptstyle \Pi}}$ , % | $ ho_{_{\!ec{J}}}$ , |
| 1               | 80,0                   | 1400,0                | 60,0                   | 720,0               | 40,0                                 | 40,0                 |
| 2               | 8,4                    | 16,7                  | 8,3                    | 8,3                 | 4,2                                  | 8,4                  |
| 3               | 100,0                  | 2900,0                | 33,3                   | 700,0               | 33,3                                 | 66,7                 |
| 4               | 50,0                   | 650,0                 | 50,0                   | 500,0               | 0,0                                  | 0,0                  |

Таблица. 2. Показатели эффективности алгоритмов сегментации по критерию общей площади выделенной облачности

| Номер<br>снимка | Пороговый<br>алгоритм | Алгоритм<br>k-средних | Алгоритм k-<br>средних с<br>обучением |  |  |  |
|-----------------|-----------------------|-----------------------|---------------------------------------|--|--|--|
|                 | S , %                 | S , %                 | S , %                                 |  |  |  |
| 1               | 529,38                | 399,57                | 110,26                                |  |  |  |
| 2               | 42,95                 | 53,56                 | 84,05                                 |  |  |  |
| 3               | 110,68                | 80,20                 | 91,08                                 |  |  |  |
| 4               | 84.77                 | 69.08                 | 119.17                                |  |  |  |

Для устранения перечисленных недостатков будем:

– во-первых, использовать метод k-средних для выделения нескольких классов облачности:

во-вторых, выполним фильтрацию полученных результатов сегментации по геометрических размерам для исключения мелких объектов, не характерных для облачности.

В соответствии с методом k-средних, выделим на изображении три класса объектов:  $O_1$  — не облачность,  $O_2$  — вероятно, не облачность и  $O_3$  — облачность. Каждый из классов включает в себя  $I_k$  объектов соответствующего типа,  $O_k = \{O_{ki}\}, i = \overline{1,I_k}, k = \overline{1,3}$ . Для отнесения пикселя  $b_{mn}$  к объекту k-го класса будем использовать функционал,  $k = \operatorname{argmin} \left| b_{mn} - \overline{b_k} \right|, k = \overline{1,3}$ , (1)

Если  $\Delta \geq \Delta_0$  , где  $\Delta_0$  — пороговое значение, то обновим параметры  $b_k=b_k$  ,  $k=\overline{1,3}$  и вновь выполним кластеризацию изображения B .

После окончания итерационного процесса облачные объекты представим классом  ${\it O}_3$  ,  ${\it B}_2 = {\it O}_3$  ,

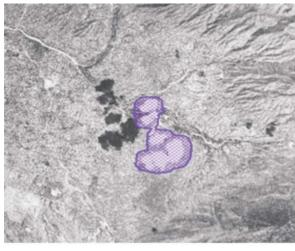
а остальные объекты отнесём к классу  $B_1, B_1 = O_1 \cup O_2$ . Для завершения процедуры сегментации отбросим все облачные объекты, площадью меньше порогового значения  $S_0$ , а остальные объекты векторизуем.

По показателям качества, представленным в таблицах 1 и 2, видно, что метод k-средних более эффективен по сравнению с пороговым алгоритмом выделения облачности. Однако он обладает крайне низким быстродействием и при обработке изображений высокого пространственного разрешения временные затраты становятся недопустимо велики. Кроме того, как показали эксперименты, качество сегментации во многом зависит от успешного задания начальных параметров  $\overline{b_k}$ . Поэтому предлагается:

 во-первых, для сокращения временных затрат и более точных настроек алгоритма использовать процедуру обучения:

 во-вторых, учитывать статистические характеристики облачных объектов для их более надёжного распознавания.

Под набором обучающих изображений будем пони-





a) 6)

где  $\overset{-}{b_k}$  – средняя яркость пикселей k -го класса объектов.

Зададим начальные значения  $\overset{-}{b}_k$  ,  $\overset{-}{b}_1=0,\overset{-}{b}_2=0,5b_{\max}$  ,  $\overset{-}{b}_3=b_{\max}$  и выполним класстеризацию изображения B с использованием функционала (1). Затем определим новые значения средних яркостей  $\overset{-}{b}_k^*$  ,  $\overset{-}{b}_k^*=\frac{1}{Q_k}\sum_{b_{mn}\in B_{kl}}b_{mn}$  , где  $Q_k$  — количество пикселей,

отнесенных к k -му классу объектов, и найдём максимальное изменение параметров кластеров  $\Delta, \Delta = \max_k \begin{vmatrix} -* & - \\ b_k - b_k \end{vmatrix}$  .

мать одномерные массивы  $D_{v}=\{d_{vj}\}, j=1, J_{v}$ , где v — номер обучающего изображения, состоящего из пикселей изображения B;  $J_{v}$  — число элементов массива с яркостями  $d_{vj}$ . Формирование обучающих изображений происходит интерактивно путём задания отрезка, начало которого принадлежит облачному объекту, а конец — не закрытой облаками части снимка. При этом обучающие изображения будут содержать 4 класса объектов:  $O_{1}$  — достоверно не облачность,  $O_{2}$  и  $O_{3}$  — объекты с пикселями, не принадлежащих к облачности с меньшей достоверностью,  $O_{4}$  — облачность. Так как облачные

объекты обладают существенно меньшей энтропией, чем подстилающая поверхность, то учтём это свойство в функционале, используемом при кластеризации,

$$k = \arg\min_{k} \left[ \left| \bar{b}_{mn} - \bar{b}_{k} \right| + c \left| e_{mn} - \bar{e}_{k} \right| \right], k = \overline{1, 4},$$
 (2)

где  $b_{mn}$  — средняя яркость, определяемая в пределах окна размером 3x3 с координатами центра (m,n);  $\mathcal{C}_{mn}$  — энтропия для квадратного окна со стороной p,p=21, и центром в точке (m,n), рассчитываемая по формуле

$$e_{mn} = \frac{1}{p^2} \sum_{b=0}^{b_{\text{max}}} h_b (\log_2(h_b) - \log_2(p^2)),$$

где  $h_b$  – количество пикселей с кодом яркости b;  $e_k$  – средняя энтропия пикселей k-го класса объектов; c – масштабный коэффициент. Использование в выражении (2)  $b_{mn}$  вместо  $b_{mn}$  снижает чувствительность алгоритма к ярким одиночным пикселям.

Зададим начальные параметры для работы алгоритма сегментации следующим образом:

$$b_1=d_{vJ_v}$$
,  $b_2=0$ ,  $7b_1+0$ ,  $3b_4$ ,  $b_3=0$ ,  $5b_1+0$ ,  $5b_4$ ,  $b_4=d_{v1}$ ,  $c_1=e_{vJ_v}$ ,  $c_2=0$ ,  $7e_1+0$ ,  $3e_4$ ,  $c_3=0$ ,  $3e_1+0$ ,  $7e_4$ ,  $c_4=e_{vJ}$ ,  $c=\frac{b_{\max}}{10}$ , где  $e_{vj}$  — энтропия, рассчитанная по окружению  $j$ -го пикселя объектов изображения  $D_v$ . Затем, используя метод k-средних, определим  $b_{kv}$  и  $e_{kv}$  для всех обучающих изображений, и общие  $b_k$  и  $e_k$  в

площади выделенной облачности S (см. рис. 2,б).

#### Сегментация затенённых участков снимка

Как было отмечено во введении, затенённые облачностью участки снижают не только визуальное качество спутникового изображения, но и оказывают мешающее действие при выполнении последующих обработок видеоданных. Непосредственное обнаружение таких участков весьма затруднительно, поскольку они не обладают уникальными фотометрическими характеристиками. Однако, после распознавания облачности для известных значений высоты и азимута Солнца, появляется возможность решения поставленной задачи.

Будем считать, что изображение B геокодировано, т.е. для каждого пикселя с координатами (m,n) известны его геодезические координаты  $\varphi(m,n)$ ,  $\lambda(m,n)$  и время t(m,n). На основе этих значений, при помощи методических указаний, приведенных в [3], вычислим азимутальный угол  $\alpha_{a3}$  и высоту Солнца —  $\alpha_{\circ}$ . Азимутальный угол  $\alpha_{a3}$  позволяет определить относительно планарных координат снимка (m,n) направление, задающее положение отбрасываемой облаком тени. Параметры направляющего вектора зададим координатными смещениями  $\Delta m$  и  $\Delta n$ , а максимальное смещение тени относительно облачности рассчитаем как  $r=\frac{\mu H}{tg\alpha_{\circ}}$ , где  $\mu$  — масштаб снимка,  $\mu$  — максимальное значение высоты облачности ( $\mu \leq 15000 M$ ).

Тогда смещение центра облачного объекта  $B_{2i}$  относительно его тени  $(\Delta_m^*,\Delta_n^*)$  определим как  $\Delta_m^*=j\Delta_m,\Delta_n^*=j\Delta_n,$ 

$$j = \arg\min_{j} \frac{\frac{1}{Q_{k}} \sum_{(m,n) \in B_{2i}} b(m+j\Delta m, n+j\Delta n) b(m,n) - b(m,n) b(m+j\Delta m, n+j\Delta n)}{\sigma(m,n)\sigma(m+j\Delta m, n+j\Delta n)},$$

форме: 
$$\overset{-}{b}_{k} = \frac{1}{V} \sum_{v=\overline{1},\overline{V}} \overset{-}{b}_{kv}, \overset{-}{e}_{k} = \frac{1}{V} \sum_{v=\overline{1},\overline{V}} \overset{-}{e}_{kv}$$
 .

Рассчитав  $b_k$  и  $e_k$  с использованием функционала (2), разделим изображение B на 4 класса объектов. Облачные объекты будут представлены классом  $O_4$ ,  $B_2 = O_4$ , а остальные объекты отнесём к классу  $B_1$ ,  $B_1 = O_1 \cup O_2 \cup O_3$ . Отфильтруем по критерию площади объекты класса  $B_2$  и выполним их векторизацию для получения контурного описания облачных объектов снимка.

По показателям качества, представленным в таблицах 1 и 2, видно, что алгоритм k-средних с обучением значительно более эффективен, чем классический алгоритм. Высокие значения  $\rho_\Pi$  и  $\rho_\Pi$  при S, близкой к 100%, на изображениях 1 и 3 объясняются особенностями сюжета. На этих снимках присутствует малое количество крупных и небольших облачных образований, вследствие чего ложное обнаружение небольшого количества облачных образований малой площади резко увеличивает значения  $\rho_\Pi$  и  $\rho_\Pi$ , фактически не сказываясь на общей

$$j = 1, 2, ..., J, J = \frac{r}{\sqrt{\Delta m^2 + \Delta n^2}},$$

где  $b(m,n),\sigma(m,n)$  — средняя яркость и СКО пикселей облачного региона  $B_{2j}$ ;  $b(m+j\Delta m,n+j\Delta n),$ 

 $\sigma(m+j\Delta m,n+j\Delta n)$ — средняя яркость и СКО пикселей, попадающих в тень от облачного объекта.

Переместив контур облачного объекта  $B_{2i}$  вдоль направляющего вектора на величину  $\Delta m^*, \Delta n^*$ , определим затенённую область изображения B, автоматически выполнив таким образом процедуру сегментации тёмного участка снимка.

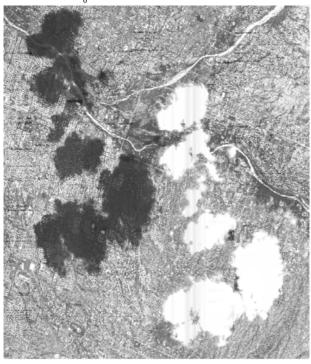
Используя результаты сегментации, улучшим визуальные характеристики изображения B путём локального затемнённых участков снимка. Отнесём контрастирования пиксели, принадлежащие к затенённой области к классу  $B_0$ , а пиксели, удалённые не более чем на  $\delta$  от её внешних границ к классу  $B_0$  и найдём коэффициенты

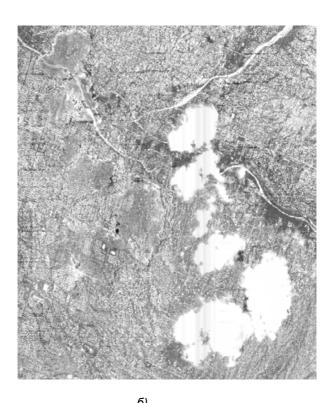
яркостного преобразования вида  $b_{mn}^{\star}=a_0+a_1b_{mn},\ b_{mn}\in B_0$ , где  $b_{mn}^{\star}$  — яркость скорректированного пикселя затенённого участка снимка.

Значение коэффициентов  $a_1$  и  $a_0$  определим по формулам:  $a_1=\frac{\sigma_0^*}{\sigma_0},\quad a_0=\overline{b}_0^*-a_1\overline{b}_0$ , где  $\overline{b}_0,\sigma_0$  — средняя

яркость и СКО пикселей, принадлежащих объектам класса  $B_0$  ;  $\overline{b}_0^*$ ,  $\sigma_0^*$  — средняя яркость и СКО пикселей, принадлежащих объектам класса  $B_0^*$ .

Результаты восстановления яркостной однородности изображения показаны на рис. 3.





о)
Рис. 3. Пример участка снимка с затенённой областью до (а) и после яркостной коррекции (б)

#### Заключение

Практическое использование рассмотренного алгоритма сегментации на большом количестве спутниковых изображений от КА «Ресурс-ДК» и «Метеор-М» показало его высокую эффективность, как с точки зрения высокой надёжности распознавания различных облачных объектов, так и с точки зрения временных затрат. При этом работа с наличием простой процедуры обучения не вызывает затруднений у операторов программных комплексов, что очень важно при выполнении поточной обработки больших массивов видеоинформации от КА серий «Ресурс», «Канопус» и др.

#### Литература

1. Р. Гонсалес, Р. Вудс. Цифровая обработка изображения. М.: Техносфера, 2005. – С. 1072.

- Otsu, N., «A Threshold Selection Method from Gray-Level Histograms» IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, 62-66 pp.
- 3. Астрономический ежегодник на 2011 год. СПб.: Наука, 2010 – С. 690.

### CLOUD SEGMENTATION OF PANCHROMATIC HIGH RESOLUTION SPACE IMAGES OF EARTH SURFACE

## A.A. Vetrov, A.E. Kuznetsov

The paper discusses the threshold and clustering algorithms of cloud objects segmentation on high-resolution panchromatic images. Proposed modification of k-means algorithm, allowing to achieve high quality of cloud formations. Proposed algorithm, improving visual characteristics of images. Proposed algorithms tested on images of «Resurs-DK» spacecraft.