УДК 621. 397

КУРВЛЕТ-ПРЕОБРАЗОВАНИЕ В ЗАДАЧЕ ПОДАВЛЕНИЯ ШУМА В ИЗОБРАЖЕНИЯХ

Моисеев А.А., Кобелев В.Ю., Волохов В.А.

Введение

На сегодняшний день существует множество различных методов цифровой обработки изображений. Они могут быть применены для решения различных задач, в частности, для анализа, восстановления и сжатия изображений. Довольно широкое применение в указанных областях в последние годы нашло вейвлетпреобразование, которое является эффективным

инструментом для работы как с одномерными, так и с двумерными сигналами. В основу вейвлетпреобразования положено разложение произвольного сигнала (функции) по некоторому ортонормированному базису, построенному на основе вейвлет-функций, обладающих определенными свойствами [1], наиболее важными из которых являются частотно-временная локализация и масштабируемость. Одной из наиболее дискретного реализаций простых вейвлетпреобразования является банк фильтров. Как правило, для обработки изображений применяются двумерные разделимые банки фильтров (на практике обработка выполняется посредством применения одномерного банка фильтров последовательно к строкам, а затем к столбцам изображения), что соответствует разделимому двумерному вейвлет-преобразованию.

Изначально разработанное для анализа точечных особенностей изображения. разделимое вейвлетпреобразование, обладающее свойством изотропного масштабирования, не позволяет анализировать более сложные элементы изображения. Значительно больше возможностей для анализа дает использование двумерного неразделимого вейвлет-преобразования [2, 3]. Соответствующие банки фильтров имеют более высокую сложность, и синтез фильтров для них является более сложной задачей. Наиболее известным примером двумерных неразделимых банков фильтров являются банки ромбовидной формы [4]. На рис. 1а, б приведены диаграммы частотного разбиения разделимого и неразделимого банков фильтров. Как можно заметить из рисунка, разделимые и неразделимые банки фильтров ромбовидной формы ограничены в выборе направлений. Более эффективным является применение двумерных неразделимых согласованных вейвлет-фильтров. Методика, описанная в [5], позволяет синтезировать вейвлетфильтры для анализа изображений с особенностями заданного вида [6].

Однако, применение как разделимого, так и неразделимого вейвлет-преобразований не позволяет выполнять обработку элементов изображения в виде криволинейных контуров, границ и т.п. На рис. 2а приведен при-

Описывается метод кратномасштабного представления изображений, называемый курвлет-преобразованием. В настоящей работе данный тип преобразования используется для задачи восстановления изображений из зашумленных данных. Приведены результаты моделирования, показывающие основные особенности данного метода преобразования. Проведено сравнение полученных результатов с результатами, полученными на основе классических алгоритмов фильтрации.

мер аппроксимации кривой вейвлет-функциями различных масштабов. Видно, что для точного представления данной кривой потребуется достаточно большое количество вейвлет-коэффициентов. В связи с этим возникает необходимость создания методов, позволяющих более компактно представлять особенности изображений подобного вида. Рядом авторов разработаны преобразования, которые можно объединить в класс контурных преобразований.

На рис. 3 приведена общая классификация наиболее известных типов контурных преобразований. Далее кратко рассмотрим особенности каждого из них.

В 1992 году Р. Бамбергер и М. Смит исследовали методы синтеза двумерных направленных банков фильтров [7], которые могут обладать свойством максимальной децимации наряду с полным восстановлением сигнала. В то время внимание было сосредоточено на использовании направленной декомпозиции для целей анализа изображения, а проблемы, связанные с конструкцией базисов для представления изображения и связи банков фильтров с базисными функциями непрерывной области, не были рассмотрены. Они были изучены в 2001 году М. Ду, который ввел в рассмотрение новый тип кратномасштабного преобразования, названного контурлет-преобразованием [8]. Основой его стали направленные банки фильтров Бамбергера и Смита, которые придали контурлет-преобразованию свойства, отличные от свойств вейвлет-преобразования, а именно, возможность более точной аппроксимации криволинейных участков на изображениях.

Ключевое понимание конструкций направленного базиса на основе преобразования Радона было сделано ранее в 1998 году Э. Кандэ и Д. Донохо с использованием риджлет-преобразования [9, 10]. Идея последнего заключается в отображении линейных особенностей изображения в точечные с использованием преобразования Радона и последующем применении вейвлетпреобразования. Результатом данной операции является эффективное представление двумерных функций с кусочно-гладкими областями, разделенными линейными участками.

Рис. 2. Иллюстрация последовательного уточнения кривой, разделяющей две гладкие области с использованием: а) базиса вейвлет-функций; б) базиса курвлет-функций

Рис. 3. Типы основных контурных преобразований

В 1999 году Э. Кандэ и Д. Донохо расширили риджлетпреобразование до курвлет-преобразования [11, 12], которое хорошо аппроксимирует особенности изображения вдоль гладких кривых (рис. 2б). По этим свойствам курвлет-преобразование схоже с контурлет-преобразованием, упомянутым выше. Однако общая идеология его выполнения отлична от контурлет-преобразования и основана на разбиении криволинейного участка изображения на линейные участки с последующим применением локального риджлет-преобразования. Помимо данных типов преобразований в 1997 и 2001 годах Д. Донохо предложил веджлет- [13] и бимлет-преобразования [14]. Первое из них может быть применено для задач удаления шума и сжатия изображений, а второе – к детектированию границ на них.

В 2000 году Э. Пеннек и С. Малла предложили другой подход обработки геометрической структуры изображения, основанный на бэндилет-преобразовании [15]. В этом преобразовании изображение разбивается на области, для каждой из которых строится векторное поле – «геометрический поток», такое, что дисперсия в направлении, заданном векторами, является постоянной. Затем вдоль полученных направлений «геометрического потока» выполняется вейвлет-преобразование.

Теория риджлет и курвлет-преобразований

Основное отличие риджлет-функций от вейвлетфункций заключаются в том, что риджлеты являются двумерными неразделимыми функциями и определяются не только параметрами масштаба и сдвига, но и параметром их ориентации в пространстве.

Впервые термин риджлет был введен Э. Кандэ [9]. В общем случае риджлет-функция может быть определена в виде:

$$\Psi_{\gamma}(\mathbf{x}) = a^{-1/2} \Psi\left(\frac{u \cdot \mathbf{x} - b}{a}\right),\tag{1}$$

где *a* – параметр масштаба, *b* – параметр смещения и *u* – параметр, определяющий ориентацию риджлета. Для того, чтобы функция (1) являлась риджлетом необходимо, чтобы функция Ψ удовлетворяла условию

$$C_{\psi} = \int_{-\infty}^{\infty} \frac{\left|\widehat{\psi}\left(\boldsymbol{\xi}\right)\right|^{2}}{\left|\boldsymbol{\xi}\right|^{d}} d\boldsymbol{\xi} < \infty , \qquad (2)$$

Из (2) следует, что функция Ψ должна удовлетворять условию нулевых моментов

$$\int_{-\infty}^{\infty} t^{k} \psi(t) dt = 0, \qquad (3)$$

rge $k = 0, 1, ..., \left[\frac{d+1}{2} - 1\right].$

Условие (3) аналогично требованию, предъявляемому к вейвлет-функции [1].

Для a > 0, $b \in \mathbf{R}$ и $\theta \in [0; 2\pi)$ определим двумерную риджлет-функцию в виде

$$\Psi_{a,b,\theta}(\mathbf{x}) = a^{-1/2} \cdot \Psi\left(\frac{x_1 \cos \theta + x_2 \sin \theta - b}{a}\right). \tag{4}$$

Функция $\psi_{a,b,\theta}(\mathbf{x})$ имеет постоянное значение вдоль прямой $x_1 \cos \theta + x_2 \sin \theta - b = const$. В направлении, перпендикулярном данной прямой, она является вейвлетом. Отсюда видна основная особенность риджлетфункции – зависимость от направления. Примеры двумерной разделимой вейвлет-функции и риджлетфункции приведены на рис. 4.

Для интегрируемой функции $f(\mathbf{x})$ прямое непрерывное риджлет-преобразование можно записать в виде криволинейного интеграла [16, 17]:

$$R_{f}(a, b, \theta) = \int f(\mathbf{x}) \psi_{a, b, \theta}(\mathbf{x}) d\mathbf{x} .$$
(5)

Формула обратного риджлет-преобразования имеет вид:

$$f(\mathbf{x}) = \int_{0}^{2\pi} \int_{-\infty0}^{\infty} R_f(a, b, \theta) \psi_{a, b, \theta}(\mathbf{x}) \frac{da}{a^3} db \frac{d\theta}{4\pi}.$$
 (6)

Кроме того, для риджлет-преобразования (5), (6) справедливо равенство Парсеваля. Следовательно, аналогично преобразованию Фурье или вейвлетпреобразованию, из равенства (5) следует, что произвольную интегрируемую функцию можно представить в виде непрерывной суперпозиции риджлетов.

Рис. 4. Примеры двумерных базисных функций: а) вейвлет-функция; б) риджлет-функция

Основным средством для вычисления риджлеткоэффициентов является представление риджлетанализа в виде вейвлет-преобразования в области коэффициентов преобразования Радона. Преобразованием Радона от функции *f* является совокупность линейных интегралов [18]

$$Rf(\theta, t) = \int f(x_1, x_2) \delta(x_1 \cos \theta + x_2 \sin \theta - t) dx_1 dx_2 , \quad (7)$$

где δ – дельта-функция Дирака. Из (7) следует, что риджлет-коэффициенты $R_f(a, b, \theta)$ функции f с использованием преобразования Радона запишутся в виде

$$R_f(a, b, \theta) = \int Rf(\theta, t) \cdot a^{-1/2} \psi((b-t)/a) dt .$$
(8)

Как видно из выражения (8), риджлетпреобразование может быть выполнено посредством применения одномерного вейвлет-преобразования к «срезам» преобразования Радона (угловая переменная θ постоянна, *t* – изменяется).

Реализация дискретного риджлет-преобразования использует связь преобразования Радона с преобразованием Фурье, которая представлена выражением:

$$\widehat{f}(\omega\cos(\theta), \omega\sin(\theta)) = \int Rf(\theta, t) \cdot e^{-i\omega t} dt$$
 (9)

Отсюда следует, что преобразование Радона может быть получено посредством применения обратного одномерного преобразования Фурье к коэффициентам двумерного преобразованию Фурье, взятым вдоль радиальных прямых, проходящих через начало координат частотной сетки. Необходимо отметить, что дискретная реализация преобразования Радона, основанная на свойстве (9), выполняется с применением быстрого преобразования Фурье с последующей интерполяцией Фурье коэффициентов (для получения коэффициентов, соответствующих угловой частоте) и является приближенной. В то же время возможны и другие методы реализации дискретного преобразования Радона, дающие более точный результат. Применение данной схемы к осуществлению риджлетпреобразования позволяет достаточно эффективно реализовать последнее в случае дискретного двумерного сигнала (изображения).

Схема риджлет-преобразования для дискретного случая приведена на рис. 5. Основные этапы его осуществления следующие:

1. Вычисление прямого двумерного преобразования Фурье (FFT2D).

2. Переход в области преобразования Фурье от прямоугольной сетки координат к полярной сетке с использованием операции интерполяции соответствующих коэффициентов преобразования Фурье. Результатом последней операции является набор линий полярной сетки.

 Применение обратного одномерного преобразования Фурье (IFFT1D) к каждой линии полученной полярной сетки. Результатом этой операции являются коэффициенты преобразования Радона.

4. Применение к плоскости преобразования Радона одномерного вейвлет-преобразования (WT1D) вдоль переменной, определяющей угол наклона линии. Результатом является область риджлет-коэффициентов.

Рис. 5. Схема двумерного дискретного риджлетпреобразования

Возможны два подхода к анализу изображения при помощи риджлет-преобразования: а) анализ на одном масштабе, при котором изображение разбивается на блоки одинакового размера с последующим риджлетанализом каждого блока; б) кратномасштабный анализ, в данном случае изображение многократно разбивается на блоки (аналогично варианту *a*) с уменьшением размера блока вдвое на каждом этапе разбиения и с последующим риджлет-анализом.

В заключение рассмотрения риджлетпреобразования необходимо отметить, что оно оптимально подходит для использования в задаче фильтрации прямых линий на изображениях, так как в основе него лежит преобразование Радона или, что то же самое, использование базисных функций вида (4). Но в то же время риджлет-преобразование является избыточным, так как выполняется полный анализ изображения на всех масштабах, независимо от масштаба деталей, содержащихся в изображении.

Как указывалось выше, курвлет-преобразование является более общим по отношению к риджлетпреобразованию и позволяет анализировать не только отрезки прямых, но и кривые линии, контуры и другие детали в изображениях. Курвлет-преобразование основано на применении кратномасштабного риджлет-преобразования к изображениям, восстановленным по отдельным частотным полосам, полученным в результате субполосной фильтрации исходного изображения. Далее кратко рассмотрим основные этапы реализации дискретного курвлет-преобразования, приведенные на рис. 6.

1. Разбиение исходного изображения на субполосы посредством дискретного вейвлет-преобразования без децимации с прореживанием импульсных характеристик вейвлет-фильтров на каждом последующем уровне разложения и с последующим восстановлением каждой из субполос в отдельности [19]. Применение вейвлет-преобразования позволяет разделить изображение в пространственной области на совокупность изображений деталей и одного аппроксимирующего изображения. Сумма этих изображений есть исходное изображение.

Рис. 6. Схема двумерного дискретного курвлетпреобразования

Рис. 7. Примеры курвлетов для различных масштабов, позиций и ориентаций

2. Полученные изображения деталей разбиваются на перекрывающиеся квадранты одинакового размера (во избежание артефактов блочности) с последующим взвешиванием некоторой функцией окна. При переходе к изображениям, содержащим более мелкие детали исходного изображения, выполняется уменьшение размера квадрантов в четыре раза так, как показано на рис. 6. Разбиение на квадранты необходимо, так как последним этапом преобразования является риджлетпреобразование. В пределах квадрантов отдельные участки кривых контуров могут быть близки к прямым линиям.

3. Вычисление риджлет-преобразования по схеме, представленной на рис. 5.

Необходимо отметить, что курвлет-функция, в отличии от риджлет-функции, локализована в пространственной области и обладает следующим свойством: геометрические размеры курвлета связаны между собой соотношением – длина ≈ ширина². На рис. 7 приведены несколько курвлет-функций для различных масштабов, ориентаций и позиций.

Исходя из указанного, можно отметить, что в отличие от риджлет-преобразования, курвлет-преобразование оптимально подходит для использования в задаче фильтрации кривых контуров на изображениях.

Результаты моделирования

Описанный выше алгоритм курвлет-преобразования может быть применен для решения задачи удаления шума из изображения. Рассмотрен метод пороговой фильтрации изображений на основе курвлетпреобразования, реализованный в среде Matlab. Для тестирования алгоритма использованы семь полутоновых изображений с разрешением *512*512* пикселей, различной степени детализации. В качестве искажения использован аддитивный белый гауссов шум. Для сравнения с рассматриваемым алгоритмом фильтрации выбраны следующие алгоритмы:

1. Пороговый алгоритм фильтрации на основе вейвлет-преобразования [20].

2. Пороговый алгоритм фильтрации на основе вейвлет-преобразования без децимации [19, 20].

3. Оптимальная винеровская фильтрация.

Общая схема алгоритма пороговой фильтрации изображений на основе курвлет-преобразования и его аналогов представлена на рис. 8.

Puc. 8. Нелинейный алгоритм фильтрации, основанный на принципе кратномасштабного представления цифровых изображений

Основу схемы фильтрации (рис. 8) составляют: блок искажения, в который входит только аддитивный гауссов шум, и блок восстановления, состоящий из схемы прямого и обратного кодирования с преобразованием, а также блок обработки коэффициентов, полученных в результате преобразования.

Схема работы блока восстановления рассматриваемого алгоритма фильтрации следующая (рис. 8):

1. Вычисление прямого преобразования изображения (вейвлет-преобразования, риджлет-преобразования, курвлет-преобразования или их аналогов).

 Изменение полученных коэффициентов преобразования по определенному правилу (в работе использовалась методика мягкой и жесткой пороговой обработки коэффициентов преобразования [20]).

3. Вычисление обратного преобразования от области измененных коэффициентов.

Результаты работы алгоритма для тестовых изображений «Лена», «Барбара» и «Отпечаток пальца» представлены на рис. 9.

Здесь ПОСШ – пиковое отношение сигнал/шум, используемое в настоящей работе для оценки степени искажения цифровых изображений, σ – среднеквадратическое отклонение рассматриваемой модели шума. Отметим, что зависимости носят монотонно спадающий характер, так как с увеличением σ растет степень искажения изображений.

Рис. 9. Результат обработки тестовых изображений: а) «Лена»; б) «Барбара»; в) «Отпечаток пальца»

В табл. 1 приведены численные результаты работы алгоритмов для среднеквадратического отклонения σ =25.

Таблица 1

Тестовое изобра- жение	Вейвлет- преобразование, ПОСШ, дБ	Вейвлет-преобра- зование без деци- мации, ПОСШ, дБ	Курвлет- преобразование, ПОСШ, дБ	Оптимальный фильтр Винера, ПОСШ, дБ
«Бабуин»	21.80	23.40	23.77	23.95
«Лена»	27.50	30.23	30.39	27.28
«Перцы»	27.73	30.41	30.23	27.27
«Корабли»	25.71	28.18	28.18	26.71
«Барбара»	24.55	26.48	28.28	25.45
«Сатурн»	28.20	28.38	37.53	26.19
«Отпечаток пальца»	21.70	23.77	23.83	22.73

Результаты работы алгоритмов

На рис. 10 и рис. 11 представлены фрагменты восстановленных тестовых изображений, полученных с использованием различных алгоритмов цифровой фильтрации.

Из представленных на рис. 10 фрагментов восстановленных тестовых изображений видно, что наилучшие визуальные результаты получены в случае применения алгоритмов фильтрации на основе вейвлет-преобразования без децимации (рис. 10г) и курвлет-преобразования (рис. 10д). Однако в первом случае на восстановленном изображении отсутствуют мелкие детали. Аналогичная ситуация наблюдается при использовании курвлетпреобразования, но контуры элементов изображения здесь обработаны лучше, хотя и наблюдаются специфические для этого преобразования артефакты.

Рис. 10. Фрагменты изображения «Лена»: а) исходного; б) зашумленного, ПОСШ=20.15 дБ; в) восстановленного на основе схемы вейвлет-преобразования, ПОСШ=27.50 дБ; г) восстановленного на основе схемы вейвлет-преобразования без децимации, ПОСШ=30.23 дБ; д) восстановленного на основе курвлетпреобразования, ПОСШ=30.39 дБ; е) восстановленного на основе винеровской фильтрации, ПОСШ=27.28 дБ

Рис. 11. Фрагменты изображения «Барбара»: а) исходного; б) зашумленного, ПОСШ=20.25 дБ; в) восстановленного на основе схемы вейвлет-преобразования, ПОСШ=24.55 дБ; г) восстановленного на основе схемы вейвлет-преобразования без децимации, ПОСШ=26.48 дБ; д) восстановленного на основе курвлетпреобразования, ПОСШ=28.28 дБ; е) восстановленного на основе винеровской фильтрации, ПОСШ=25.45 дБ

Из фрагментов восстановленных тестовых изображений, представленных на рис. 11, видно, что текстура элементов одежды в виде полос наилучшим образом восстановлена в случае использования алгоритма обработки на основе курвлет-преобразования (рис. 11д).

Заключение

В работе рассмотрено курвлет-преобразование и его применение в задаче удаления шума. Из полученных результатов обработки тестовых изображений следует, что использование алгоритма удаления шума на основе курвлет-преобразования позволяет более эффективно обрабатывать элементы изображения, содержащие контуры, детали в виде линий, кривых и т.п. Последнее связано с особой формой базисных функций данного преобразования. Отметим, что в обработанных изображениях присутствуют артефакты по форме, соответствующей форме базисных функций. Для фрагмента тестового изображения «Барбара», характеризуемого большим количеством мелких деталей, получено улучшение качества восстановленного изображения в среднем на 2 дБ по сравнению с другими алгоритмами восстановления.

Литература

- Добеши И. Десять лекций по вейвлетам. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004.
- Kovacevic J., Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn // IEEE Trans. on Information Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis. 1992. V. 38, № 2. P. 533-555.
- Cohen A., Daubechies I. Nonseparable bidimensional wavelet bases // Rev. Mat. Iberoamericana. 1993. V. 9, № 1. P. 51-137.
- Karlsson G., Vetterli M. Theory of two-dimensional multirate filter banks // IEEE Trans. Signal Proc. 1990. V. 38, № 6. P. 925-973.
- 5. Кобелев В.Ю., Приоров А.Л. Применение неразделимых вейвлет-фильтров в задачах сжатия изображений // Цифровая обработка сигналов. 2006. № 2. С. 21-26.
- Кобелев В.Ю., Приоров А.Л. Анализ изображений при помощи согласованных двумерных вейвлет-фильтров // Радио-

техника. 2008. № 1. С. 12-19.

- Bamberger R.H., Smith M.J.T. A filter bank for the directional decomposition of images theory and design // IEEE Trans. Signal Proc. 1992. V. 40, № 4. P. 882-893.
- Do M.N. Directional multiresolution image representations // PhD dissertation, School Comput. Commun. Sci., Swiss Fed. Inst. Technol., Lausanne, Switzerland, 2001.
- 9. Candes E.J. Ridgelets: Theory and applications. PhD thesis, Department of Statistics, Stanford University. 1998.
- Candes E.J., Donoho D.L. Ridgelets: a key to higher-dimensional intermittency // Phil. Trans. R. Soc. Lond. A. 1999. P. 2495-2509.
- Candes E.J., Donoho D.L. Curvelets a suprisingly effective nonadaptive representation for objects with edges / In Cohen A., Rabut C., Schumaker L.L., editors, Curve and Surface Fitting. Vanderbilt University Press. Saint-Malo. 1999.
- Candes E.J., Donoho D.L. Curvelets, multiresolution representation, and scaling laws / In Aldroubi A., Laine A.F., Unser M.A., editors, SPIE Wavelet Applications in Signal and Image Processing VIII. 2000. V. 4119.
- Donoho D.L. Wedgelets: Nearly-minimax estimation of edges // Annals of Stat. 1999. V. 27, P. 856-897.
- Donoho D.L., Huo X. Beamlets and multiscale image analysis / In Multiscale and Multiresolution Methods, Lecture Notes in Computational Science and Engineering. Springer, 2001.
- Pennec E., Mallat S. Image compression with geometric wavelets // In Proc. IEEE Int. Conf. on Image Proc., Vancouver, Canada. 2000. P. 661-664.
- Starck J. L., Emmanuel J., Candes E., Donoho D. The curvelet transform for image denoising // IEEE Trans. Image Proc. 2002. V. 11, № 6. P. 670-684.
- Starck J.L., Murtagh F., Candes E., Donoho D. Gray and color image contrast enhancement by the curvelet transform // IEEE Trans. Image Proc. 2003. V. 12, № 6. P. 706-717.
- Кравчук А.С. Основы компьютерной томографии. М.: Дрофа, 2001.
- Guo H., Burrus C.S. Convolution using the undecimated discrete wavelet transform // Int. Conf. Acoustics, Speech, Signal Processing (ICASSP-96), 1996. V. 3. P. 1291.
- 20. Malla S. A wavelet tour of signal processing. Academic Press, 1999.